File size: 12,510 Bytes
c4a230f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import math
from typing import List, Optional

import timm
import torch
import torchvision
from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from torchvision import transforms
from transformers import LlamaTokenizer

from .configuration_minicpm import MiniCPMVConfig
from .modeling_minicpm import MiniCPMPreTrainedModel, MiniCPMForCausalLM
from .resampler import Resampler


class MiniCPMVPreTrainedModel(MiniCPMPreTrainedModel):
    config_class = MiniCPMVConfig


class MiniCPMV(MiniCPMVPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.llm = MiniCPMForCausalLM(config)
        self.vpm = self.init_vision_module()
        self.vision_dim = self.vpm.embed_dim
        self.embed_dim = self.llm.config.hidden_size
        self.resampler = self.init_resampler(self.embed_dim ,self.vision_dim)
        self.transform = self.init_transform()


    def init_vision_module(self):
        model = timm.create_model(
            self.config.vision_encoder,
            pretrained=False,
            num_classes=0,
            dynamic_img_size=True,
            dynamic_img_pad=True
        )

        if isinstance(model, timm.models.VisionTransformer):
            if model.attn_pool is not None:
                model.attn_pool = torch.nn.Identity()

        if self.config.drop_vision_last_layer:
            model.blocks = model.blocks[:-1]

        return model

    def init_resampler(self, embed_dim, vision_dim):
        return Resampler(
            grid_size=int(math.sqrt(self.config.query_num)),
            embed_dim=embed_dim,
            num_heads=embed_dim // 128,
            kv_dim=vision_dim,
        )

    def init_transform(self):
        return transforms.Compose([
            transforms.Resize(
                (self.config.image_size, self.config.image_size),
                interpolation=torchvision.transforms.InterpolationMode.BICUBIC
            ),
            transforms.ToTensor(),
            transforms.Normalize(mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD)
        ])



    def get_vision_embedding(self, pixel_values):
        res = []
        dtype = self.vpm.pos_embed.data.dtype
        for pixel_value in pixel_values:
            vision_embedding = self.vpm.forward_features(pixel_value.unsqueeze(0).type(dtype))
            if hasattr(self.vpm, 'num_prefix_tokens') and self.vpm.num_prefix_tokens > 0:
                vision_embedding = vision_embedding[:, self.vpm.num_prefix_tokens:]
            res.append(self.resampler(vision_embedding))
        return torch.vstack(res)

    def get_vllm_embedding(self, data):
        if 'vision_hidden_states' not in data:
            pixel_values_list = data['pixel_values']
            vision_hidden_states = []
            for pixel_values in pixel_values_list:
                if len(pixel_values) > 0:
                    vision_hidden_states.append(self.get_vision_embedding(pixel_values))
                elif self.training:
                    dtype = self.vpm.pos_embed.data.dtype
                    device = self.vpm.pos_embed.data.device
                    dummy_image = torch.zeros(
                        (1, 3, 224, 224),
                        device=device, dtype=dtype
                    )
                    vision_hidden_states.append(self.get_vision_embedding(dummy_image))
                else:
                    vision_hidden_states.append([])

        else:
            vision_hidden_states = data['vision_hidden_states']

        vllm_embedding = self.llm.model.embed_tokens(data['input_ids']) * self.llm.config.scale_emb
        vision_hidden_states = [i.type(vllm_embedding.dtype) if isinstance(
            i, torch.Tensor) else i for i in vision_hidden_states]

        bs = len(data['input_ids'])
        for i in range(bs):
            cur_vs_hs = vision_hidden_states[i]
            if len(cur_vs_hs) > 0:
                cur_vllm_emb = vllm_embedding[i]
                cur_image_bound = data['image_bound'][i]
                if len(cur_image_bound) > 0:
                    image_indices = torch.stack(
                        [torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound]
                    ).to(vllm_embedding.device)

                    cur_vllm_emb.scatter_(0, image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
                                          cur_vs_hs.view(-1, cur_vs_hs.shape[-1]))
                elif self.training:
                    cur_vllm_emb += cur_vs_hs[0].mean() * 0

        return vllm_embedding, vision_hidden_states

    def forward(self, data, **kwargs):
        vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
        position_ids = data["position_ids"]
        if position_ids.dtype != torch.int64:
            position_ids = position_ids.long()

        return self.llm(
            input_ids=None,
            position_ids=position_ids,
            inputs_embeds=vllm_embedding,
            **kwargs
        )


    def _convert_to_tensors(self, tokenizer, input_str, max_inp_length: Optional[int] = None):
        if tokenizer.add_bos_token:
            input_ids = tokenizer.encode(input_str)
        else:
            input_ids = [tokenizer.bos_id] + tokenizer.encode(input_str)
        if max_inp_length is not None:
            input_ids = input_ids[: max_inp_length]
        input_ids = torch.tensor(input_ids, dtype=torch.int32)

        image_start_tokens = torch.where(input_ids == tokenizer.im_start_id)[0]
        # 跳过 im_start
        image_start_tokens += 1
        image_end_tokens = torch.where(input_ids == tokenizer.im_end_id)[0]
        valid_image_nums = max(len(image_start_tokens), len(image_end_tokens))
        image_bound = torch.hstack(
            [image_start_tokens[: valid_image_nums].unsqueeze(-1),
             image_end_tokens[:valid_image_nums].unsqueeze(-1)]
        )

        model_input = {}
        model_input["input_ids"] = input_ids.unsqueeze(0).cuda()
        model_input["image_bound"] = image_bound

        return model_input


    def _process_list(self, tokenizer, data_list: List[str], max_inp_length: Optional[int] = None):
        pad_keys = ['input_ids']
        input_tensors = []
        for data in data_list:
            input_tensors.append(self._convert_to_tensors(tokenizer, data, max_inp_length))
        padded = {}
        for key in pad_keys:
            padded[key] = pad(input_tensors, key, padding_side="left").cuda()
        padded['image_bound'] = [i['image_bound'] for i in input_tensors]
        return padded

    def _decode(self, inputs_embeds, tokenizer, **kwargs):
        output = self.llm.generate(
            inputs_embeds=inputs_embeds,
            pad_token_id=0,
            eos_token_id=tokenizer.eos_token_id,
            **kwargs
        )
        return self._decode_text(output, tokenizer)

    def _decode_text(self, result_ids, tokenizer):
        result_text = []
        for result in result_ids:
            result = result[result != 0]
            if result[0] == tokenizer.bos_id:
                result = result[1:]
            if result[-1] == tokenizer.eos_id:
                result = result[:-1]
            result_text.append(tokenizer.decode(result).strip())
        return result_text

    def generate(
            self,
            data_list=None,
            img_list=None,
            tokenizer=None,
            max_inp_length: Optional[int] = None,
            vision_hidden_states=None,
            return_vision_hidden_states=False,
            **kwargs
    ):

        assert data_list is not None
        bs = len(data_list)
        if img_list == None:
            img_list = [[] for i in range(bs)]
        assert bs == len(img_list)

        model_inputs = self._process_list(tokenizer, data_list, max_inp_length)

        if vision_hidden_states is None:
            pixel_values = []
            for i in range(bs):
                img_inps = []
                for img in img_list[i]:
                    img_inps.append(self.transform(img))
                if img_inps:
                    pixel_values.append(torch.stack(img_inps).cuda())
                else:
                    pixel_values.append([])
            model_inputs['pixel_values'] = pixel_values
        else:
            model_inputs['vision_hidden_states'] = vision_hidden_states

        with torch.inference_mode():
            model_inputs['inputs_embeds'], vision_hidden_states = self.get_vllm_embedding(model_inputs)

            result = self._decode(model_inputs['inputs_embeds'], tokenizer, **kwargs)

        if return_vision_hidden_states:
            return result, vision_hidden_states

        return result


    def chat(self, image, question, context, tokenizer, vision_hidden_states=None, max_new_tokens=2048, sampling=False, **kwargs):
        if not context:
            question = tokenizer.im_start + tokenizer.unk_token * self.config.query_num + tokenizer.im_end + '\n' + question
            final_input = f'<用户>{question}<AI>'
        else:
            final_input = f'{context}<用户>{question}<AI>'

        if sampling:
            generation_config = {
                'top_p': 0.8,
                'top_k': 100,
                'temperature':0.6,
                'do_sample': True
            }
        else:
            generation_config = {
                'num_beams': 3,
                'repetition_penalty': 1.2,
            }

        generation_config.update((k, kwargs[k]) for k in generation_config.keys() & kwargs.keys())

        with torch.inference_mode():
            res, vision_hidden_states = self.generate(
                data_list=[final_input],
                max_inp_length=2048,
                img_list=[[image]],
                tokenizer=tokenizer,
                max_new_tokens=max_new_tokens,
                vision_hidden_states=vision_hidden_states,
                return_vision_hidden_states=True,
                **generation_config
            )

        context = final_input + res[0]

        return res[0], context, generation_config


class LlamaTokenizerWrapper(LlamaTokenizer):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.im_start = "<image>"
        self.im_end = "</image>"
        self.ref_start = "<ref>"
        self.ref_end = "</ref>"
        self.box_start = "<box>"
        self.box_end = "</box>"
        self.quad_start = "<quad>"
        self.quad_end = "</quad>"

    @property
    def eos_id(self):
        return self.sp_model.eos_id()

    @property
    def bos_id(self):
        return self.sp_model.bos_id()

    @property
    def unk_id(self):
        return self.sp_model.unk_id()

    @property
    def im_start_id(self):
        return self._convert_token_to_id(self.im_start)

    @property
    def im_end_id(self):
        return self._convert_token_to_id(self.im_end)


def pad(orig_items, key, max_length=None, padding_value=0, padding_side="left"):
    items = []
    if isinstance(orig_items[0][key], list):
        assert isinstance(orig_items[0][key][0], torch.Tensor)
        for it in orig_items:
            for tr in it[key]:
                items.append({key: tr})
    else:
        assert isinstance(orig_items[0][key], torch.Tensor)
        items = orig_items

    batch_size = len(items)
    shape = items[0][key].shape
    dim = len(shape)
    assert dim <= 3
    if max_length is None:
        max_length = 0
    max_length = max(max_length, max(item[key].shape[-1] for item in items))
    min_length = min(item[key].shape[-1] for item in items)
    dtype = items[0][key].dtype

    if dim == 1:
        return torch.cat([item[key] for item in items], dim=0)
    elif dim == 2:
        if max_length == min_length:
            return torch.cat([item[key] for item in items], dim=0)
        tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
    else:
        tensor = torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype) + padding_value

    for i, item in enumerate(items):
        if dim == 2:
            if padding_side == "left":
                tensor[i, -len(item[key][0]):] = item[key][0].clone()
            else:
                tensor[i, : len(item[key][0])] = item[key][0].clone()
        elif dim == 3:
            if padding_side == "left":
                tensor[i, -len(item[key][0]):, :] = item[key][0].clone()
            else:
                tensor[i, : len(item[key][0]), :] = item[key][0].clone()

    return tensor