Kaguya-19 commited on
Commit
e393c99
·
verified ·
1 Parent(s): 89f0857

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -21
README.md CHANGED
@@ -8,33 +8,33 @@ tags:
8
  - sentence-transformers
9
  library_name: transformers
10
  ---
11
- ## UltraRAG-Reranker
12
 
13
- **UltraRAG-Reranker** 是面壁智能与清华大学自然语言处理实验室(THUNLP)、东北大学信息检索小组(NEUIR)共同开发的中英双语言文本重排序模型,有如下特点:
14
  - 出色的中文、英文重排序能力。
15
  - 出色的中英跨语言重排序能力。
16
  - 支持长文本(最长8192token)。
17
 
18
- UltraRAG-Reranker 基于 [MiniCPM-1B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-1B-sft-bf16) 训练,结构上采取双向注意力。采取多阶段训练方式,共使用包括开源数据、机造数据、闭源数据在内的约 500 万条训练数据。
19
 
20
  欢迎关注 UltraRAG 系列:
21
 
22
- - 检索模型:[UltraRAG-Embedding](https://huggingface.co/openbmb/UltraRAG-Embedding)
23
- - 重排模型:[UltraRAG-Reranker](https://huggingface.co/openbmb/UltraRAG-Reranker)
24
  - 领域自适应RAG框架:[UltraRAG](https://github.com/openbmb/UltraRAG)
25
 
26
- **UltraRAG-Reranker** is a bilingual & cross-lingual text re-ranking model developed by ModelBest Inc. , THUNLP and NEUIR , featuring:
27
 
28
  - Exceptional Chinese and English re-ranking capabilities.
29
  - Outstanding cross-lingual re-ranking capabilities between Chinese and English.
30
  - Long-text support (up to 8192 tokens).
31
 
32
- UltraRAG-Reranker is trained based on [MiniCPM-1B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-1B-sft-bf16) and incorporates bidirectional attention in its architecture. The model underwent multi-stage training using approximately 6 million training examples, including open-source, synthetic, and proprietary data.
33
 
34
  We also invite you to explore the UltraRAG series:
35
 
36
- - Retrieval Model: [UltraRAG-Embedding](https://huggingface.co/openbmb/UltraRAG-Embedding)
37
- - Re-ranking Model: [UltraRAG-Reranker](https://huggingface.co/openbmb/UltraRAG-Reranker)
38
  - Domain Adaptive RAG Framework: [UltraRAG](https://github.com/openbmb/UltraRAG)
39
 
40
 
@@ -52,7 +52,7 @@ We also invite you to explore the UltraRAG series:
52
 
53
  本模型支持指令,输入格式如下:
54
 
55
- UltraRAG-Reranker supports instructions in the following format:
56
 
57
  ```
58
  <s>Instruction: {{ instruction }} Query: {{ query }}</s>{{ document }}
@@ -72,7 +72,7 @@ For example:
72
 
73
  也可以不提供指令,即采取如下格式:
74
 
75
- UltraRAG-Reranker also works in instruction-free mode in the following format:
76
 
77
  ```
78
  <s>Query: {{ query }}</s>{{ document }}
@@ -96,7 +96,7 @@ transformers==4.37.2
96
  from transformers import AutoModelForSequenceClassification
97
  import torch
98
 
99
- model_name = "OpenBMB/UltraRAG-Reranker"
100
 
101
  # model = AutoModelForSequenceClassification.from_pretrained(model_name, trust_remote_code=True,attn_implementation="flash_attention_2", torch_dtype=torch.float16).to("cuda")
102
  model.eval()
@@ -120,7 +120,7 @@ from sentence_transformers import CrossEncoder
120
  from transformers import LlamaTokenizer
121
  import torch
122
 
123
- model_name = "OpenBMB/UltraRAG-Reranker"
124
  model = CrossEncoder(model_name,max_length=1024,trust_remote_code=True, automodel_args={"torch_dtype": torch.float16})
125
  # You can also use the following code to use flash_attention_2
126
  #model = CrossEncoder(model_name,max_length=1024,trust_remote_code=True, automodel_args={"attn_implementation":"flash_attention_2","torch_dtype": torch.float16})
@@ -157,7 +157,7 @@ INSTRUCTION = "Query:"
157
  query = f"{INSTRUCTION} {query}"
158
 
159
  array = AsyncEngineArray.from_args(
160
- [EngineArgs(model_name_or_path = "OpenBMB/UltraRAG-Reranker", engine="torch", dtype="float16", bettertransformer=False, trust_remote_code=True, model_warmup=False)]
161
  )
162
 
163
  async def rerank(engine: AsyncEmbeddingEngine):
@@ -172,7 +172,7 @@ asyncio.run(rerank(array[0])) # [(RerankReturnType(relevance_score=0.017917344,
172
 
173
  ```python
174
  from FlagEmbedding import FlagReranker
175
- model_name = "OpenBMB/UltraRAG-Reranker"
176
  model = FlagReranker(model_name, use_fp16=True, query_instruction_for_rerank="Query: ", trust_remote_code=True)
177
  # You can hack the __init__() method of the FlagEmbedding BaseReranker class to use flash_attention_2 for faster inference
178
  # self.model = AutoModelForSequenceClassification.from_pretrained(
@@ -211,7 +211,7 @@ We re-rank top-100 docments from `bge-large-zh-v1.5` in C-MTEB/Retrieval and fro
211
  | bge-reranker-v2-gemma | 71.74 | 60.71 |
212
  | bge-reranker-v2.5-gemma2 | - | 63.67 |
213
  | MiniCPM-Reranker | 76.79 | 61.32 |
214
- | UltraRAG-Reranker | 76.19 | 61.34 |
215
 
216
  ### 中英跨语言重排序结果 CN-EN Cross-lingual Re-ranking Results
217
 
@@ -226,14 +226,14 @@ We re-rank top-100 documents from `bge-m3` (Dense).
226
  | bge-reranker-v2-m3 | 69.75 | 40.98 | 49.67 |
227
  | gte-multilingual-reranker-base | 68.51 | 38.74 | 45.3 |
228
  | MiniCPM-Reranker | 71.73 | 43.65 | 50.59 |
229
- | UltraRAG-Reranker | 71.34 | 46.04 | 51.86 |
230
 
231
  ## 许可证 License
232
 
233
  - 本仓库中代码依照 [Apache-2.0 协议](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE)开源。
234
- - UltraRAG-Reranker 模型权重的使用则需要遵循 [MiniCPM 模型协议](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md)。
235
- - UltraRAG-Reranker 模型权重对学术研究完全开放。如需将模型用于商业用途,请填写[此问卷](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g)。
236
 
237
  * The code in this repo is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
238
- * The usage of UltraRAG-Reranker model weights must strictly follow [MiniCPM Model License.md](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md).
239
- * The models and weights of UltraRAG-Reranker are completely free for academic research. After filling out a ["questionnaire"](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, UltraRAG-Reranker weights are also available for free commercial use.
 
8
  - sentence-transformers
9
  library_name: transformers
10
  ---
11
+ ## MiniCPM-Reranker-Light
12
 
13
+ **MiniCPM-Reranker-Light** 是面壁智能与清华大学自然语言处理实验室(THUNLP)、东北大学信息检索小组(NEUIR)共同开发的中英双语言文本重排序模型,有如下特点:
14
  - 出色的中文、英文重排序能力。
15
  - 出色的中英跨语言重排序能力。
16
  - 支持长文本(最长8192token)。
17
 
18
+ MiniCPM-Reranker-Light 基于 [MiniCPM-1B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-1B-sft-bf16) 训练,结构上采取双向注意力。采取多阶段训练方式,共使用包括开源数据、机造数据、闭源数据在内的约 500 万条训练数据。
19
 
20
  欢迎关注 UltraRAG 系列:
21
 
22
+ - 检索模型:[MiniCPM-Embedding-Light](https://huggingface.co/openbmb/MiniCPM-Embedding-Light)
23
+ - 重排模型:[MiniCPM-Reranker-Light](https://huggingface.co/openbmb/MiniCPM-Reranker-Light)
24
  - 领域自适应RAG框架:[UltraRAG](https://github.com/openbmb/UltraRAG)
25
 
26
+ **MiniCPM-Reranker-Light** is a bilingual & cross-lingual text re-ranking model developed by ModelBest Inc. , THUNLP and NEUIR , featuring:
27
 
28
  - Exceptional Chinese and English re-ranking capabilities.
29
  - Outstanding cross-lingual re-ranking capabilities between Chinese and English.
30
  - Long-text support (up to 8192 tokens).
31
 
32
+ MiniCPM-Reranker-Light is trained based on [MiniCPM-1B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-1B-sft-bf16) and incorporates bidirectional attention in its architecture. The model underwent multi-stage training using approximately 6 million training examples, including open-source, synthetic, and proprietary data.
33
 
34
  We also invite you to explore the UltraRAG series:
35
 
36
+ - Retrieval Model: [MiniCPM-Embedding-Light](https://huggingface.co/openbmb/MiniCPM-Embedding-Light)
37
+ - Re-ranking Model: [MiniCPM-Reranker-Light](https://huggingface.co/openbmb/MiniCPM-Reranker-Light)
38
  - Domain Adaptive RAG Framework: [UltraRAG](https://github.com/openbmb/UltraRAG)
39
 
40
 
 
52
 
53
  本模型支持指令,输入格式如下:
54
 
55
+ MiniCPM-Reranker-Light supports instructions in the following format:
56
 
57
  ```
58
  <s>Instruction: {{ instruction }} Query: {{ query }}</s>{{ document }}
 
72
 
73
  也可以不提供指令,即采取如下格式:
74
 
75
+ MiniCPM-Reranker-Light also works in instruction-free mode in the following format:
76
 
77
  ```
78
  <s>Query: {{ query }}</s>{{ document }}
 
96
  from transformers import AutoModelForSequenceClassification
97
  import torch
98
 
99
+ model_name = "OpenBMB/MiniCPM-Reranker-Light"
100
 
101
  # model = AutoModelForSequenceClassification.from_pretrained(model_name, trust_remote_code=True,attn_implementation="flash_attention_2", torch_dtype=torch.float16).to("cuda")
102
  model.eval()
 
120
  from transformers import LlamaTokenizer
121
  import torch
122
 
123
+ model_name = "OpenBMB/MiniCPM-Reranker-Light"
124
  model = CrossEncoder(model_name,max_length=1024,trust_remote_code=True, automodel_args={"torch_dtype": torch.float16})
125
  # You can also use the following code to use flash_attention_2
126
  #model = CrossEncoder(model_name,max_length=1024,trust_remote_code=True, automodel_args={"attn_implementation":"flash_attention_2","torch_dtype": torch.float16})
 
157
  query = f"{INSTRUCTION} {query}"
158
 
159
  array = AsyncEngineArray.from_args(
160
+ [EngineArgs(model_name_or_path = "OpenBMB/MiniCPM-Reranker-Light", engine="torch", dtype="float16", bettertransformer=False, trust_remote_code=True, model_warmup=False)]
161
  )
162
 
163
  async def rerank(engine: AsyncEmbeddingEngine):
 
172
 
173
  ```python
174
  from FlagEmbedding import FlagReranker
175
+ model_name = "OpenBMB/MiniCPM-Reranker-Light"
176
  model = FlagReranker(model_name, use_fp16=True, query_instruction_for_rerank="Query: ", trust_remote_code=True)
177
  # You can hack the __init__() method of the FlagEmbedding BaseReranker class to use flash_attention_2 for faster inference
178
  # self.model = AutoModelForSequenceClassification.from_pretrained(
 
211
  | bge-reranker-v2-gemma | 71.74 | 60.71 |
212
  | bge-reranker-v2.5-gemma2 | - | 63.67 |
213
  | MiniCPM-Reranker | 76.79 | 61.32 |
214
+ | MiniCPM-Reranker-Light | 76.19 | 61.34 |
215
 
216
  ### 中英跨语言重排序结果 CN-EN Cross-lingual Re-ranking Results
217
 
 
226
  | bge-reranker-v2-m3 | 69.75 | 40.98 | 49.67 |
227
  | gte-multilingual-reranker-base | 68.51 | 38.74 | 45.3 |
228
  | MiniCPM-Reranker | 71.73 | 43.65 | 50.59 |
229
+ | MiniCPM-Reranker-Light | 71.34 | 46.04 | 51.86 |
230
 
231
  ## 许可证 License
232
 
233
  - 本仓库中代码依照 [Apache-2.0 协议](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE)开源。
234
+ - MiniCPM-Reranker-Light 模型权重的使用则需要遵循 [MiniCPM 模型协议](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md)。
235
+ - MiniCPM-Reranker-Light 模型权重对学术研究完全开放。如需将模型用于商业用途,请填写[此问卷](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g)。
236
 
237
  * The code in this repo is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
238
+ * The usage of MiniCPM-Reranker-Light model weights must strictly follow [MiniCPM Model License.md](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md).
239
+ * The models and weights of MiniCPM-Reranker-Light are completely free for academic research. After filling out a ["questionnaire"](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, MiniCPM-Reranker-Light weights are also available for free commercial use.