File size: 20,392 Bytes
75f07f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d0117a
75f07f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
# copy from https://huggingface.co./Alibaba-NLP/gte-Qwen2-1.5B-instruct/blob/main/scripts/eval_mteb.py

#### ATTENTION ####
# To Reproduce the results of Sparse and Dense + Sparse, you need to hack the MTEB RetrievalEvaluator
# in mteb/evaluation/evaluators/RetrievalEvaluator.py
# class RetrievalEvaluator(Evaluator):
    # def __init__(
    #     self,
    #     retriever=None,
    #     task_name: str | None = None,
    #     k_values: list[int] = [1, 3, 5, 10, 20, 100, 1000],
    #     score_function: str = "cos_sim",
    #     encode_kwargs: dict[str, Any] = {},
    #     **kwargs,
    # ):
# you need to change default score_function to "dot" to reproduce the results of Sparse and Dense + Sparse
MODE = "Dense" # "Dense" or "Sparse" or "Dense + Sparse"

TASK_LIST_CLASSIFICATION = [
    "AmazonCounterfactualClassification",
    "AmazonPolarityClassification",
    "AmazonReviewsClassification",
    "Banking77Classification",
    "EmotionClassification",
    "ImdbClassification",
    "MassiveIntentClassification",
    "MassiveScenarioClassification",
    "MTOPDomainClassification",
    "MTOPIntentClassification",
    "ToxicConversationsClassification",
    "TweetSentimentExtractionClassification",
]

TASK_LIST_CLUSTERING = [
    "ArxivClusteringP2P",
    "ArxivClusteringS2S",
    "BiorxivClusteringP2P",
    "BiorxivClusteringS2S",
    "MedrxivClusteringP2P",
    "MedrxivClusteringS2S",
    "RedditClustering",
    "RedditClusteringP2P",
    "StackExchangeClustering",
    "StackExchangeClusteringP2P",
    "TwentyNewsgroupsClustering",
]

TASK_LIST_PAIR_CLASSIFICATION = [
    "SprintDuplicateQuestions",
    "TwitterSemEval2015",
    "TwitterURLCorpus",
]

TASK_LIST_RERANKING = [
    "AskUbuntuDupQuestions",
    "MindSmallReranking",
    "SciDocsRR",
    "StackOverflowDupQuestions",
]

TASK_LIST_RETRIEVAL = [
    "ArguAna",
    "FiQA2018",
    "QuoraRetrieval",
    "SCIDOCS",
    "SciFact",
    "Touche2020",
    "TRECCOVID",
    "NFCorpus",
    "NQ",
    "ClimateFEVER",
    "CQADupstackAndroidRetrieval",
    "CQADupstackEnglishRetrieval",
    "CQADupstackGamingRetrieval",
    "CQADupstackGisRetrieval",
    "CQADupstackMathematicaRetrieval",
    "CQADupstackPhysicsRetrieval",
    "CQADupstackProgrammersRetrieval",
    "CQADupstackStatsRetrieval",
    "CQADupstackTexRetrieval",
    "CQADupstackUnixRetrieval",
    "CQADupstackWebmastersRetrieval",
    "CQADupstackWordpressRetrieval",
    "DBPedia",
    "HotpotQA",
    "MSMARCO",
    "FEVER",
]

TASK_LIST_STS = [
    "BIOSSES",
    "SICK-R",
    "STS12",
    "STS13",
    "STS14",
    "STS15",
    "STS16",
    "STS17",
    "STS22",
    "STSBenchmark",
    "SummEval",
]

MTEB_TASK_LIST = (
     TASK_LIST_RETRIEVAL
    + TASK_LIST_CLASSIFICATION
    + TASK_LIST_CLUSTERING
    + TASK_LIST_PAIR_CLASSIFICATION
    + TASK_LIST_RERANKING
    + TASK_LIST_STS
)


CMTEB_TASK_LIST = [
    "TNews",
    "IFlyTek",
    "MultilingualSentiment",
    "JDReview",
    "OnlineShopping",
    "Waimai",
    "AmazonReviewsClassification",
    "MassiveIntentClassification",
    "MassiveScenarioClassification",
    "MultilingualSentiment",
    "CLSClusteringS2S",
    "CLSClusteringP2P",
    "ThuNewsClusteringS2S",
    "ThuNewsClusteringP2P",
    "Ocnli",
    "Cmnli",
    "T2Reranking",
    "MMarcoReranking",
    "CMedQAv1-reranking",
    "CMedQAv2-reranking",
    "T2Retrieval",
    "MMarcoRetrieval",
    "DuRetrieval",
    "CovidRetrieval",
    "CmedqaRetrieval",
    "EcomRetrieval",
    "MedicalRetrieval",
    "VideoRetrieval",
    "ATEC",
    "BQ",
    "LCQMC",
    "PAWSX",
    "STSB",
    "AFQMC",
    "QBQTC",
    "STS22",
]

MTEB_TASK_LIST = CMTEB_TASK_LIST + MTEB_TASK_LIST

import torch
import torch.nn.functional as F
import tqdm
import numpy as np
import math

from functools import partial
from torch.utils.data import DataLoader
from datasets import Dataset
from transformers import AutoModel, AutoTokenizer, DataCollatorWithPadding, PreTrainedTokenizerFast, BatchEncoding
from transformers.modeling_outputs import BaseModelOutput
from typing import List, Dict
from mteb import MTEB

def get_detailed_instruct(task_description: str) -> str:
    if not task_description:
        return ""

    return "Instruction: {} Query: ".format(task_description)



def get_task_def_by_task_name_and_type(
    task_name: str,
    task_type: str,
    default_instruct="",
):
    if task_type in ["STS"]:
        return None

    if task_type in ["Summarization"]:
        return "Given a news summary, retrieve other semantically similar summaries"

    if task_type in ["Classification"]:
        task_name_to_instruct: Dict[str, str] = {
            "AmazonCounterfactualClassification": "Classify a given Amazon customer review text as either counterfactual or not-counterfactual.",
            "AmazonPolarityClassification": "Classify Amazon reviews into positive or negative sentiment.",
            "AmazonReviewsClassification": "Classify the given Amazon review into its appropriate rating category.",
            "Banking77Classification": "Given a online banking query, find the corresponding intents.",
            "EmotionClassification": "Classify the emotion expressed in the given Twitter message into one of the six emotions: anger, fear, joy, love, sadness, and surprise.",
            "ImdbClassification": "Classify the sentiment expressed in the given movie review text from the IMDB dataset.",
            "MassiveIntentClassification": "Given a user utterance as query, find the user intents.",
            "MassiveScenarioClassification": "Given a user utterance as query, find the user scenarios.",
            "MTOPDomainClassification": "Classify the intent domain of the given utterance in task-oriented conversation.",
            "MTOPIntentClassification": "Classify the intent of the given utterance in task-oriented conversation.",
            "ToxicConversationsClassification": "Classify the given comments as either toxic or not toxic.",
            "TweetSentimentExtractionClassification": "Classify the sentiment of a given tweet as either positive, negative, or neutral.",
            # C-MTEB eval instructions
            "TNews": "根据标题确定新闻的类别。",
            "IFlyTek": "根据描述确定APP的类别。",
            "MultilingualSentiment": "将亚马逊评论分为积极、消极或中立情绪。",
            "JDReview": "将商品评论分为积极或消极情绪。",
            "OnlineShopping": "将商品评论分为积极或消极情绪。",
            "Waimai": "将外卖评论分为积极或消极情绪。",
        }
        return task_name_to_instruct.get(task_name,None)

    if task_type in ["Clustering"]:
        task_name_to_instruct: Dict[str, str] = {
            "ArxivClusteringP2P": "Identify the main and secondary category of Arxiv papers based on the titles and abstracts.",
            "ArxivClusteringS2S": "Identify the main and secondary category of Arxiv papers based on the titles.",
            "BiorxivClusteringP2P": "Identify the main category of Biorxiv papers based on the titles and abstracts.",
            "BiorxivClusteringS2S": "Identify the main category of Biorxiv papers based on the titles.",
            "MedrxivClusteringP2P": "Identify the main category of Medrxiv papers based on the titles and abstracts.",
            "MedrxivClusteringS2S": "Identify the main category of Medrxiv papers based on the titles.",
            "RedditClustering": "Identify the topic or theme of Reddit posts based on the titles.",
            "RedditClusteringP2P": "Identify the topic or theme of Reddit posts based on the titles and posts.",
            "StackExchangeClustering": "Identify the topic or theme of StackExchange posts based on the titles.",
            "StackExchangeClusteringP2P": "Identify the topic or theme of StackExchange posts based on the given paragraphs.",
            "TwentyNewsgroupsClustering": "Identify the topic or theme of the given news articles.",
            # C-MTEB eval instructions
            "CLSClusteringS2S": "根据标题确定文章的类别。",
            "CLSClusteringP2P": "根据标题和摘要确定文章的类别。",
            "ThuNewsClusteringS2S": "根据标题确定新闻的类别。",
            "ThuNewsClusteringP2P": "根据标题和摘要确定新闻的类别。",
        }
        return task_name_to_instruct.get(task_name,None)

    if task_type in ["Reranking", "PairClassification"]:
        task_name_to_instruct: Dict[str, str] = {
            "AskUbuntuDupQuestions": "Retrieve duplicate questions from AskUbuntu forum.",
            "MindSmallReranking": "Retrieve relevant news articles based on user browsing history.",
            "SciDocsRR": "Given a title of a scientific paper, retrieve the titles of other relevant papers.",
            "StackOverflowDupQuestions": "Retrieve duplicate questions from StackOverflow forum.",
            "SprintDuplicateQuestions": "Retrieve duplicate questions from Sprint forum.",
            "TwitterSemEval2015": "Retrieve tweets that are semantically similar to the given tweet.",
            "TwitterURLCorpus": "Retrieve tweets that are semantically similar to the given tweet.",
            # C-MTEB eval instructions
            "T2Reranking": "为这个问题检索相关段落。",
            "MMarcoReranking": "为这个查询检索相关段落。",
            "CMedQAv1-reranking": "为这个医疗问题检索相关回答。",
            "CMedQAv2-reranking": "为这个医疗问题检索相关回答。",
        }

        return task_name_to_instruct.get(task_name,None)

    if task_type in ["Retrieval"]:
        if task_name.lower().startswith("cqadupstack"):
            return "Given a question, retrieve detailed question descriptions from Stackexchange that are duplicates to the given question"

        task_name_to_instruct: Dict[str, str] = {
            "ArguAna": "Given a claim, find documents that refute the claim.",
            "ClimateFEVER": "Given a claim about climate change, retrieve documents that support or refute the claim.",
            "DBPedia": "Given a query, retrieve relevant entity descriptions from DBPedia.",
            "FEVER": "Given a claim, retrieve documents that support or refute the claim.",
            "FiQA2018": "Given a financial question, retrieve user replies that best answer the question.",
            "HotpotQA": "Given a multi-hop question, retrieve documents that can help answer the question.",
            "MSMARCO": "Given a web search query, retrieve relevant passages that answer the query.",
            "NFCorpus": "Given a question, retrieve relevant documents that best answer the question.",
            "NQ": "Given a question, retrieve Wikipedia passages that answer the question.",
            "QuoraRetrieval": "Given a question, retrieve questions that are semantically equivalent to the given question.",
            "SCIDOCS": "Given a scientific paper title, retrieve paper abstracts that are cited by the given paper.",
            "SciFact": "Given a scientific claim, retrieve documents that support or refute the claim.",
            "Touche2020": "Given a question, retrieve detailed and persuasive arguments that answer the question.",
            "TRECCOVID": "Given a query on COVID-19, retrieve documents that answer the query.",
            # C-MTEB eval instructions
            "T2Retrieval": "为这个问题检索相关段落。",
            "MMarcoRetrieval": "为这个查询检索相关段落。",
            "DuRetrieval": "为这个问题检索相关百度知道回答。",
            "CovidRetrieval": "为这个问题检索相关政策回答。",
            "CmedqaRetrieval": "为这个医疗问题检索相关回答。",
            "EcomRetrieval": "为这个查询检索相关商品标题。",
            "MedicalRetrieval": "为这个医疗问题检索相关回答。",
            "VideoRetrieval": "为这个电影标题检索相关段落。",
        }

        task_name_to_instruct.update({k.lower(): v for k, v in task_name_to_instruct.items()})

        return task_name_to_instruct.get(task_name,None)
    return default_instruct
def _transform_func(tokenizer: PreTrainedTokenizerFast,
                    examples: Dict[str, List]) -> BatchEncoding:
    batch_dict = tokenizer(examples['input_texts'],
                           max_length=1024,
                           padding=True,
                           truncation=True)

    return batch_dict

# def weighted_mean_pooling(hidden,attention_mask):
#     # print(hidden.shape,attention_mask.shape)
#     attention_mask_ = attention_mask * attention_mask.cumsum(dim=1)
#     s = torch.sum(hidden * attention_mask_.unsqueeze(-1).float(), dim=1)
#     d = attention_mask_.sum(dim=1, keepdim=True).float()
#     reps = s / d
#     return reps

def mean_pooling(hidden,attention_mask):
    # print(hidden.shape,attention_mask.shape)
    s = torch.sum(hidden * attention_mask.unsqueeze(-1).float(), dim=1)
    d = attention_mask.sum(dim=1, keepdim=True).float()
    return s / d

def wmean_pooling(hidden,attention_mask):
    attention_mask_ = attention_mask * attention_mask.cumsum(dim=1)
    hidden_masked = hidden * attention_mask_.unsqueeze(-1).float()
    s = torch.sum(hidden_masked, dim=1)
    d = attention_mask_.sum(dim=1, keepdim=True).float()
    reps = s / d
    return reps

def reverse_wmean_pooling(hidden,attention_mask):
    attention_mask_ = attention_mask * attention_mask.cumsum(dim=1)
    d = attention_mask_.sum(dim=1, keepdim=True).unsqueeze(1).float() / attention_mask.sum(dim=1, keepdim=True).unsqueeze(1).float()
    hidden = hidden.float() * d
    return hidden / torch.clamp(attention_mask_.unsqueeze(-1).float(),min=1e-9)


def sparse_pooling(head,model,items,hidden,attention_mask):
    hidden = reverse_wmean_pooling(hidden,attention_mask) # reverse weighted mean pooling, beacuse the hidden states are modified in the model
    max_hidden_norm = torch.max(torch.norm(hidden,dim=-1),dim = -1).values
    token_weights = torch.relu(head(hidden.float()/max_hidden_norm.unsqueeze(-1).unsqueeze(-1)))
    vocab_size = model.embed_tokens.weight.size(0)
    input_ids = items["input_ids"]
    sparse_embedding_chunks = []
    mini_chunk_size = 1
    mini_chunk_size = min(mini_chunk_size,hidden.shape[0])
    for i in range(0, token_weights.size(0), mini_chunk_size):
        now_chunk_size = min(mini_chunk_size, token_weights.size(0) - i)
        sparse_embedding = torch.zeros(now_chunk_size , input_ids.size(1), vocab_size,
                                   dtype=token_weights.dtype,
                                   device=token_weights.device)
        sparse_embedding_chunks.append(torch.max((torch.scatter(sparse_embedding, dim=-1, index=input_ids[i:i+now_chunk_size, :].unsqueeze(-1), src=token_weights[i:i+now_chunk_size, :])), dim=1).values)
    sparse_embedding = torch.concat(sparse_embedding_chunks, dim=0)
    unused_tokens = [0,1,2,73440]
    sparse_embedding[:, unused_tokens] *= 0.
    return sparse_embedding

def concat_pooling(head,model,items,hidden,attention_mask):
    mean_reps = mean_pooling(hidden,attention_mask)
    mean_reps = F.normalize(mean_reps, p=2, dim=1)
    sparse_reps = sparse_pooling(head,model,items,hidden,attention_mask) * math.sqrt(0.3)
    return torch.cat([mean_reps,sparse_reps],dim=-1)

#

class DenseEncoder(torch.nn.Module):
    def __init__(self, **kwargs):
        super().__init__()
        
        model_path = "openbmb/MiniCPM-Embedding-Light"
        self.encoder = AutoModel.from_pretrained(model_path, trust_remote_code=True,attn_implementation="flash_attention_2", torch_dtype=torch.float16).to("cuda")
        self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
        self.gpu_count = torch.cuda.device_count()
        self.instruction = ""

        self.encoder.eval()
        self.encoder.cuda()

        if self.gpu_count > 1:
            self.encoder = torch.nn.DataParallel(self.encoder)
    
    @torch.no_grad()
    def encode(self, sentences,is_query=None, **kwargs) -> np.ndarray:
        """ Returns a list of embeddings for the given sentences.
        Args:
            sentences (`List[str]`): List of sentences to encode
            batch_size (`int`): Batch size for the encoding

        Returns:
            `List[np.ndarray]` or `List[tensor]`: List of embeddings for the given sentences
        """
        if is_query is not False:
            sentences = [self.instruction + s for s in sentences]
        dataset: Dataset = Dataset.from_dict({'input_texts': sentences})
        # dataset: Dataset = Dataset.from_dict({'input_texts': ["Query: " + s for s in sentences]})
        
        dataset.set_transform(partial(_transform_func, self.tokenizer))

        data_collator = DataCollatorWithPadding(self.tokenizer, pad_to_multiple_of=8)
        data_loader = DataLoader(
            dataset,
            batch_size=128* self.gpu_count,
            shuffle=False,
            drop_last=False,
            num_workers=2,
            collate_fn=data_collator,
            pin_memory=True)

        encoded_embeds = []
        for batch_dict in tqdm.tqdm(data_loader, desc='encoding', mininterval=10):

            with torch.cuda.amp.autocast() and torch.no_grad():
                for key in batch_dict:
                    batch_dict[key] = batch_dict[key].to("cuda")
                outputs: BaseModelOutput = self.encoder(**batch_dict)
                if MODE == "Dense":
                    embeds = mean_pooling(outputs.last_hidden_state, batch_dict['attention_mask'])
                    embeds = F.normalize(embeds, p=2, dim=1)
                elif MODE == "Sparse":
                    embeds = sparse_pooling(self.encoder.module.head,self.encoder.module, batch_dict, outputs.last_hidden_state, batch_dict['attention_mask'])
                else:
                    embeds = concat_pooling(self.encoder.module.head,self.encoder.module, batch_dict, outputs.last_hidden_state, batch_dict['attention_mask'])
                encoded_embeds.append(embeds.cpu().numpy())

        return np.concatenate(encoded_embeds, axis=0)
    
    @torch.no_grad()
    def encode_queries(self, queries: list[str], **kwargs) -> list[np.ndarray] | list[torch.Tensor]:
        """
        Returns a list of embeddings for the given sentences.
        Args:
            queries: List of sentences to encode

        Returns:
            List of embeddings for the given sentences
        """


        queries = [query for query in queries]
        return self.encode(queries, is_query=True, **kwargs)
    
    @torch.no_grad()
    def encode_corpus(self, corpus: List[Dict[str, str]], **kwargs):
        # borrowed from mteb.abstasks.AbsTaskRetrieval.DRESModel
        if type(corpus) is dict:
            sentences = [
                (corpus["title"][i] + " " + corpus["text"][i]).strip()
                if "title" in corpus
                else corpus["text"][i].strip()
                for i in range(len(corpus["text"]))
            ]
        elif isinstance(corpus[0], dict):
            sentences = [
                (doc["title"] + " " + doc["text"]).strip()
                if "title" in doc
                else doc["text"].strip()
                for doc in corpus
            ]
        else:
            sentences = corpus
        is_query = False
        return self.encode(sentences, is_query=is_query, **kwargs)


model = DenseEncoder()
task_names = MTEB_TASK_LIST
task_names = ["NFCorpus"]
lang = ["en","zh", "zh-CN"]

for task in task_names:
    try:
        evaluation = MTEB(tasks=[task], task_langs=lang)
        task_cls = evaluation.tasks[0]
        task_name: str = task_cls.metadata_dict["name"]
        task_type: str = task_cls.metadata_dict["type"]
        instruction = get_task_def_by_task_name_and_type(task_name, task_type)
        model.instruction = get_detailed_instruct(instruction)
        print(model.instruction)
        if task == "MSMARCO":
            eval_splits = ["dev"]
        elif task in CMTEB_TASK_LIST:
            eval_splits = task_cls.metadata_dict["eval_splits"]
        else:
            eval_splits = ["test"]
        evaluation.run(model, eval_splits=eval_splits, overwrite_results=True)
        
    except Exception as e:
        import traceback
        print(traceback.format_exc())
        continue