--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: DiscoResearch/mixtral-7b-8expert model-index: - name: qlora-out results: [] datasets: - tatsu-lab/alpaca --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) # Alpaca Mixtral This model is a qLoRA fine-tuned version of [DiscoResearch/mixtral-7b-8expert](https://huggingface.co./DiscoResearch/mixtral-7b-8expert) on the tatsu-lab/alpaca dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0