File size: 4,798 Bytes
b70fa61
 
 
 
 
 
 
 
 
 
 
1a467c4
 
b70fa61
 
1a467c4
 
 
b70fa61
1a467c4
b70fa61
1a467c4
 
b70fa61
1a467c4
 
b70fa61
1a467c4
6fbe699
08b542b
9f602c7
08b542b
 
 
 
 
a9b93a4
08b542b
637c16f
 
08b542b
 
53288d7
 
 
eea5583
 
1a467c4
b70fa61
1a467c4
 
 
b70fa61
 
 
 
1a467c4
 
b70fa61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a467c4
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-7B-Instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: DCFT-Stratos-Verified-114k-7B-4gpus
  results: []
datasets:
- open-thoughts/open-thoughts-114k
---

<p align="center">
    <img src="https://huggingface.co./datasets/open-thoughts/open-thoughts-114k/resolve/main/open_thoughts.png" width="50%">
</p>

# OpenThinker-7B

This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co./Qwen/Qwen2.5-7B-Instruct) on the 
[OpenThoughts-114k dataset](https://huggingface.co./datasets/open-thoughts/OpenThoughts-114k) dataset.

The dataset is derived by distilling DeepSeek-R1 using the [data pipeline available on github](https://github.com/open-thoughts/open-thoughts). 
More info about the dataset can be found on the dataset card at [OpenThoughts-114k dataset](https://huggingface.co./datasets/open-thoughts/open-thoughts-114k).

This model improves upon the [Bespoke-Stratos-7B model](https://huggingface.co./bespokelabs/Bespoke-Stratos-7B), which used 17k examples ([Bespoke-Stratos-17k dataset](https://huggingface.co./datasets/bespokelabs/Bespoke-Stratos-17k)).
The numbers reported in the table below are evaluated with our open-source tool [Evalchemy](https://github.com/mlfoundations/Evalchemy).

|                             | AIME24   | MATH500 | GPQA-Diamond | LCBv2 Easy  | LCBv2 Medium  | LCBv2 Hard  | LCBv2 All  |
| --------------------------- | -------- | ------- | ------------ | ----------- | ------------- | ----------- | ---------- |
| OpenThinker-7B              | 43.3     | 83.0    | 42.4         | 75.3        | 28.6          | 6.5         | 39.9       |
| Bespoke-Stratos-7B          | 16.6     | 79.6    | 38.9         | 71.4        | 25.2          | 0.8         | 35.8       |
| DeepSeek-R1-Distill-Qwen-7B | 60       | 88.2    | 46.9         | 79.7        | 45.1          | 14.6        | 50.1       |
| gpt-4o-0513                 | 10       | 75.8    | 46.5         | 87.4        | 42.7          | 8.9         | 50.5       |
| o1-mini                     | 63       | 85.6    | 60           | 92.8        | 74.7          | 39.8        | 72.8       |

We are fully open-source. Our [model weights](https://huggingface.co./open-thoughts), [datasets](https://huggingface.co./open-thoughts), [data generation code](https://github.com/open-thoughts/open-thoughts), [evaluation code](https://github.com/mlfoundations/Evalchemy), and [training code](https://github.com/hiyouga/LLaMA-Factory) are all publicly available. 

|  | Open Weights | Open Data | Open Code | 
|--|--------------|-----------| --------- |
|OpenThinker-7B|βœ…|[βœ…](https://huggingface.co./datasets/open-thoughts/OpenThoughts-114k)|[βœ…](https://github.com/open-thoughts/open-thoughts) |
|Bespoke-Stratos-7B|βœ…|[βœ…](https://huggingface.co./datasets/bespokelabs/Bespoke-Stratos-17k)|[βœ…](https://github.com/bespokelabsai/curator/tree/main/examples/bespoke-stratos-data-generation)|
|DeepSeek-R1-Distill-Qwen-7B|βœ…|❌|❌|
|gpt-4o-0513|❌|❌|❌|❌|
|o1-mini|❌|❌|❌|❌|


## Intended uses & limitations

Apache 2.0 License


## Training procedure

We used four 8xH100 nodes to train the model for 20 hours.

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 32
- gradient_accumulation_steps: 3
- total_train_batch_size: 96
- total_eval_batch_size: 256
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0

### Framework versions

- Transformers 4.46.1
- Pytorch 2.3.0
- Datasets 3.1.0
- Tokenizers 0.20.3

More info can be found in our repository: [https://github.com/open-thoughts/open-thoughts](https://github.com/open-thoughts/open-thoughts).

# Links
- πŸ“Š [Open Thoughts Launch Blog Post](https://www.open-thoughts.ai/blog/launch)
- πŸ“Š [Open Thoughts GitHub Repository](https://github.com/open-thoughts/open-thoughts)
- 🧠 [OpenThoughts-114k dataset](https://huggingface.co./datasets/open-thoughts/OpenThoughts-114k)
- πŸ€– [OpenThinker-7B model](https://huggingface.co./open-thoughts/OpenThinker-7B) - this model.
- πŸ“Š [Bespoke-Stratos Blog Post](https://www.bespokelabs.ai/blog/bespoke-stratos-the-unreasonable-effectiveness-of-reasoning-distillation)
- 🧠 [Bespoke-Stratos-17k dataset](https://huggingface.co./datasets/bespokelabs/Bespoke-Stratos-17k)
- πŸ€– [Bespoke-Stratos-32B model](https://huggingface.co./bespokelabs/Bespoke-Stratos-32B)
- πŸ€– [Bespoke-Stratos-7B model](https://huggingface.co./bespokelabs/Bespoke-Stratos-7B)