--- library_name: transformers.js tags: - background-removal - mask-generation - Dichotomous Image Segmentation - Camouflaged Object Detection - Salient Object Detection repo_url: https://github.com/ZhengPeng7/BiRefNet pipeline_tag: image-segmentation ---

Bilateral Reference for High-Resolution Dichotomous Image Segmentation

Peng Zheng 1,4,5,6,  Dehong Gao 2,  Deng-Ping Fan 1*,  Li Liu 3,  Jorma Laaksonen 4,  Wanli Ouyang 5,  Nicu Sebe 6
1 Nankai University  2 Northwestern Polytechnical University  3 National University of Defense Technology  4 Aalto University  5 Shanghai AI Laboratory  6 University of Trento 
| *DIS-Sample_1* | *DIS-Sample_2* | | :------------------------------: | :-------------------------------: | | | | For more information, check out the official [repository](https://github.com/ZhengPeng7/BiRefNet). ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co./docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: ```bash npm i @huggingface/transformers ``` You can then use the model for image matting, as follows: ```js import { AutoModel, AutoProcessor, RawImage } from '@huggingface/transformers'; // Load model and processor const model_id = 'onnx-community/BiRefNet_lite'; const model = await AutoModel.from_pretrained(model_id, { dtype: 'fp32' }); const processor = await AutoProcessor.from_pretrained(model_id); // Load image from URL const url = 'https://images.pexels.com/photos/5965592/pexels-photo-5965592.jpeg?auto=compress&cs=tinysrgb&w=1024'; const image = await RawImage.fromURL(url); // Pre-process image const { pixel_values } = await processor(image); // Predict alpha matte const { output_image } = await model({ input_image: pixel_values }); // Save output mask const mask = await RawImage.fromTensor(output_image[0].sigmoid().mul(255).to('uint8')).resize(image.width, image.height); mask.save('mask.png'); ``` | Input image | Output mask | |--------|--------| | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/cRw4xmlhgkCZ72qJckrps.png) | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/pcUeTxkZKPRVfT5oDn0Un.png) | ## Citation ``` @article{BiRefNet, title={Bilateral Reference for High-Resolution Dichotomous Image Segmentation}, author={Zheng, Peng and Gao, Dehong and Fan, Deng-Ping and Liu, Li and Laaksonen, Jorma and Ouyang, Wanli and Sebe, Nicu}, journal={CAAI Artificial Intelligence Research}, year={2024} } ``` --- Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co./docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).