--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: Boya1_SGD_1-e3_20Epoch_Deit-tiny-patch16_fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.42884199134199136 --- # Boya1_SGD_1-e3_20Epoch_Deit-tiny-patch16_fold3 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co./facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.7155 - Accuracy: 0.4288 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 2.4106 | 1.0 | 923 | 2.4578 | 0.2002 | | 2.3587 | 2.0 | 1846 | 2.2972 | 0.2516 | | 2.1274 | 3.0 | 2769 | 2.1627 | 0.3055 | | 2.1583 | 4.0 | 3692 | 2.0604 | 0.3279 | | 1.9036 | 5.0 | 4615 | 1.9842 | 0.3458 | | 1.7721 | 6.0 | 5538 | 1.9243 | 0.3582 | | 1.9867 | 7.0 | 6461 | 1.8782 | 0.3726 | | 1.8532 | 8.0 | 7384 | 1.8428 | 0.3891 | | 1.8503 | 9.0 | 8307 | 1.8165 | 0.4004 | | 1.79 | 10.0 | 9230 | 1.7943 | 0.4037 | | 1.7717 | 11.0 | 10153 | 1.7761 | 0.4091 | | 1.7696 | 12.0 | 11076 | 1.7613 | 0.4148 | | 1.7298 | 13.0 | 11999 | 1.7507 | 0.4191 | | 1.7468 | 14.0 | 12922 | 1.7401 | 0.4210 | | 1.6085 | 15.0 | 13845 | 1.7322 | 0.4229 | | 1.7188 | 16.0 | 14768 | 1.7257 | 0.4278 | | 1.7307 | 17.0 | 15691 | 1.7212 | 0.4259 | | 1.5257 | 18.0 | 16614 | 1.7177 | 0.4275 | | 1.6729 | 19.0 | 17537 | 1.7160 | 0.4294 | | 1.7293 | 20.0 | 18460 | 1.7155 | 0.4288 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.1.0 - Datasets 2.19.0 - Tokenizers 0.19.1