--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: Boya1_Adamax_1-e4_20Epoch_Deit-tiny-patch16_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.5623306233062331 --- # Boya1_Adamax_1-e4_20Epoch_Deit-tiny-patch16_fold4 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co./facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 3.5379 - Accuracy: 0.5623 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.4184 | 1.0 | 923 | 1.5125 | 0.4894 | | 1.1581 | 2.0 | 1846 | 1.3440 | 0.5398 | | 1.0675 | 3.0 | 2769 | 1.2921 | 0.5683 | | 0.9984 | 4.0 | 3692 | 1.3169 | 0.5756 | | 0.6437 | 5.0 | 4615 | 1.3971 | 0.5629 | | 0.491 | 6.0 | 5538 | 1.5307 | 0.5547 | | 0.3697 | 7.0 | 6461 | 1.6679 | 0.5615 | | 0.2372 | 8.0 | 7384 | 1.9476 | 0.5461 | | 0.0824 | 9.0 | 8307 | 2.1631 | 0.5531 | | 0.0471 | 10.0 | 9230 | 2.4822 | 0.5485 | | 0.0645 | 11.0 | 10153 | 2.7301 | 0.5523 | | 0.0461 | 12.0 | 11076 | 2.8827 | 0.5588 | | 0.0021 | 13.0 | 11999 | 3.1615 | 0.5575 | | 0.0011 | 14.0 | 12922 | 3.1796 | 0.5612 | | 0.0141 | 15.0 | 13845 | 3.2737 | 0.5566 | | 0.0004 | 16.0 | 14768 | 3.3570 | 0.5593 | | 0.0004 | 17.0 | 15691 | 3.4150 | 0.5621 | | 0.0003 | 18.0 | 16614 | 3.4800 | 0.5615 | | 0.0002 | 19.0 | 17537 | 3.5180 | 0.5615 | | 0.0002 | 20.0 | 18460 | 3.5379 | 0.5623 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.1.0 - Datasets 2.19.0 - Tokenizers 0.19.1