--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: Boya1_Adamax_1-e4_20Epoch_Deit-tiny-patch16_fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.5695346320346321 --- # Boya1_Adamax_1-e4_20Epoch_Deit-tiny-patch16_fold3 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co./facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 3.5040 - Accuracy: 0.5695 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.3705 | 1.0 | 923 | 1.4925 | 0.4968 | | 1.1741 | 2.0 | 1846 | 1.3247 | 0.5411 | | 1.1089 | 3.0 | 2769 | 1.2524 | 0.5777 | | 0.8912 | 4.0 | 3692 | 1.2699 | 0.5712 | | 0.6118 | 5.0 | 4615 | 1.3695 | 0.5725 | | 0.4514 | 6.0 | 5538 | 1.5162 | 0.5690 | | 0.3342 | 7.0 | 6461 | 1.6732 | 0.5641 | | 0.1558 | 8.0 | 7384 | 1.8402 | 0.5668 | | 0.139 | 9.0 | 8307 | 2.0769 | 0.5676 | | 0.0399 | 10.0 | 9230 | 2.4530 | 0.5582 | | 0.0251 | 11.0 | 10153 | 2.6195 | 0.5630 | | 0.0197 | 12.0 | 11076 | 2.8679 | 0.5598 | | 0.0022 | 13.0 | 11999 | 3.0450 | 0.5593 | | 0.0102 | 14.0 | 12922 | 3.1628 | 0.5614 | | 0.0226 | 15.0 | 13845 | 3.2622 | 0.5655 | | 0.0004 | 16.0 | 14768 | 3.3164 | 0.5668 | | 0.0003 | 17.0 | 15691 | 3.3759 | 0.5703 | | 0.0002 | 18.0 | 16614 | 3.4406 | 0.5687 | | 0.0002 | 19.0 | 17537 | 3.4891 | 0.5695 | | 0.0004 | 20.0 | 18460 | 3.5040 | 0.5695 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.1.0 - Datasets 2.19.0 - Tokenizers 0.19.1