--- base_model: ondevicellm/tinyllama_mole_v1 tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - HuggingFaceH4/ultrachat_200k model-index: - name: tinyllama_mole_sft_router05_ep3 results: [] --- # tinyllama_mole_sft_router05_ep3 This model is a fine-tuned version of [ondevicellm/tinyllama_mole_v1](https://huggingface.co./ondevicellm/tinyllama_mole_v1) on the HuggingFaceH4/ultrachat_200k dataset. It achieves the following results on the evaluation set: - Loss: 2.1129 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 120 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3008 | 0.09 | 100 | 2.2785 | | 2.2257 | 0.18 | 200 | 2.2161 | | 2.1922 | 0.26 | 300 | 2.1924 | | 2.1698 | 0.35 | 400 | 2.1773 | | 2.1428 | 0.44 | 500 | 2.1668 | | 2.1632 | 0.53 | 600 | 2.1586 | | 2.1503 | 0.61 | 700 | 2.1516 | | 2.1369 | 0.7 | 800 | 2.1460 | | 2.1324 | 0.79 | 900 | 2.1409 | | 2.1158 | 0.88 | 1000 | 2.1362 | | 2.1396 | 0.96 | 1100 | 2.1321 | | 2.0565 | 1.05 | 1200 | 2.1317 | | 2.0596 | 1.14 | 1300 | 2.1297 | | 2.0712 | 1.23 | 1400 | 2.1276 | | 2.0626 | 1.31 | 1500 | 2.1259 | | 2.0654 | 1.4 | 1600 | 2.1235 | | 2.0628 | 1.49 | 1700 | 2.1216 | | 2.046 | 1.58 | 1800 | 2.1197 | | 2.067 | 1.66 | 1900 | 2.1180 | | 2.0702 | 1.75 | 2000 | 2.1161 | | 2.057 | 1.84 | 2100 | 2.1144 | | 2.0307 | 1.93 | 2200 | 2.1129 | | 2.0134 | 2.01 | 2300 | 2.1172 | | 2.0205 | 2.1 | 2400 | 2.1172 | | 2.0091 | 2.19 | 2500 | 2.1170 | | 2.0021 | 2.28 | 2600 | 2.1164 | | 2.0006 | 2.37 | 2700 | 2.1159 | | 2.006 | 2.45 | 2800 | 2.1158 | | 2.0121 | 2.54 | 2900 | 2.1152 | | 1.9942 | 2.63 | 3000 | 2.1150 | | 2.0129 | 2.72 | 3100 | 2.1149 | | 2.0041 | 2.8 | 3200 | 2.1146 | | 2.0002 | 2.89 | 3300 | 2.1146 | | 2.019 | 2.98 | 3400 | 2.1146 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0