--- license: apache-2.0 base_model: ondevicellm/tinyllama_moe tags: - alignment-handbook - generated_from_trainer - trl - sft - generated_from_trainer datasets: - HuggingFaceH4/ultrachat_200k model-index: - name: tinyllama_moe_sft_ultrachat200k_v2_epochs3 results: [] --- # tinyllama_moe_sft_ultrachat200k_v2_epochs3 This model is a fine-tuned version of [ondevicellm/tinyllama_moe](https://huggingface.co./ondevicellm/tinyllama_moe) on the HuggingFaceH4/ultrachat_200k dataset. It achieves the following results on the evaluation set: - Loss: 1.1178 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 115 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.336 | 0.09 | 100 | 1.3129 | | 1.2424 | 0.18 | 200 | 1.2363 | | 1.2079 | 0.26 | 300 | 1.2084 | | 1.185 | 0.35 | 400 | 1.1911 | | 1.1546 | 0.44 | 500 | 1.1787 | | 1.1741 | 0.53 | 600 | 1.1692 | | 1.1612 | 0.61 | 700 | 1.1613 | | 1.1453 | 0.7 | 800 | 1.1547 | | 1.141 | 0.79 | 900 | 1.1489 | | 1.1247 | 0.88 | 1000 | 1.1438 | | 1.1485 | 0.96 | 1100 | 1.1392 | | 1.067 | 1.05 | 1200 | 1.1387 | | 1.0694 | 1.14 | 1300 | 1.1368 | | 1.0814 | 1.23 | 1400 | 1.1341 | | 1.0727 | 1.31 | 1500 | 1.1316 | | 1.0769 | 1.4 | 1600 | 1.1292 | | 1.0728 | 1.49 | 1700 | 1.1270 | | 1.0558 | 1.58 | 1800 | 1.1247 | | 1.0753 | 1.66 | 1900 | 1.1229 | | 1.0799 | 1.75 | 2000 | 1.1209 | | 1.066 | 1.84 | 2100 | 1.1192 | | 1.0406 | 1.93 | 2200 | 1.1178 | | 1.0193 | 2.01 | 2300 | 1.1222 | | 1.0276 | 2.1 | 2400 | 1.1220 | | 1.0171 | 2.19 | 2500 | 1.1215 | | 1.0112 | 2.28 | 2600 | 1.1211 | | 1.0087 | 2.37 | 2700 | 1.1207 | | 1.0158 | 2.45 | 2800 | 1.1204 | | 1.0219 | 2.54 | 2900 | 1.1199 | | 1.0024 | 2.63 | 3000 | 1.1197 | | 1.019 | 2.72 | 3100 | 1.1197 | | 1.0135 | 2.8 | 3200 | 1.1194 | | 1.0094 | 2.89 | 3300 | 1.1194 | | 1.0284 | 2.98 | 3400 | 1.1194 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.14.6 - Tokenizers 0.15.0