--- license: apache-2.0 base_model: ondevicellm/tinyllama_moe tags: - alignment-handbook - generated_from_trainer - trl - sft - generated_from_trainer datasets: - HuggingFaceH4/ultrachat_200k - ondevicellm/SlimOrca model-index: - name: tinyllama_moe_sft_ultrachat-slimorca results: [] --- # tinyllama_moe_sft_ultrachat-slimorca This model is a fine-tuned version of [ondevicellm/tinyllama_moe](https://huggingface.co./ondevicellm/tinyllama_moe) on the HuggingFaceH4/ultrachat_200k and the ondevicellm/SlimOrca datasets. It achieves the following results on the evaluation set: - Loss: 1.1526 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 120 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.4601 | 0.05 | 100 | 1.3361 | | 1.3324 | 0.1 | 200 | 1.2566 | | 1.2946 | 0.14 | 300 | 1.2279 | | 1.2767 | 0.19 | 400 | 1.2111 | | 1.2298 | 0.24 | 500 | 1.1995 | | 1.2247 | 0.29 | 600 | 1.1902 | | 1.2208 | 0.34 | 700 | 1.1833 | | 1.2375 | 0.39 | 800 | 1.1775 | | 1.2038 | 0.43 | 900 | 1.1726 | | 1.1926 | 0.48 | 1000 | 1.1683 | | 1.1933 | 0.53 | 1100 | 1.1649 | | 1.1893 | 0.58 | 1200 | 1.1618 | | 1.2029 | 0.63 | 1300 | 1.1593 | | 1.2201 | 0.68 | 1400 | 1.1572 | | 1.1741 | 0.72 | 1500 | 1.1557 | | 1.1813 | 0.77 | 1600 | 1.1545 | | 1.1668 | 0.82 | 1700 | 1.1536 | | 1.1495 | 0.87 | 1800 | 1.1530 | | 1.1595 | 0.92 | 1900 | 1.1527 | | 1.1607 | 0.97 | 2000 | 1.1526 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.0.1+cu117 - Datasets 2.16.1 - Tokenizers 0.15.0