hushell commited on
Commit
dd65ee0
1 Parent(s): 7ab3f50

Model save

Browse files
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: ondevicellm/tinyllama_moe
4
+ tags:
5
+ - trl
6
+ - sft
7
+ - generated_from_trainer
8
+ datasets:
9
+ - generator
10
+ model-index:
11
+ - name: tinyllama_moe_sft_ultrachat-slimorca
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # tinyllama_moe_sft_ultrachat-slimorca
19
+
20
+ This model is a fine-tuned version of [ondevicellm/tinyllama_moe](https://huggingface.co/ondevicellm/tinyllama_moe) on the generator dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 1.1526
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 2e-05
42
+ - train_batch_size: 16
43
+ - eval_batch_size: 8
44
+ - seed: 42
45
+ - distributed_type: multi-GPU
46
+ - num_devices: 4
47
+ - gradient_accumulation_steps: 2
48
+ - total_train_batch_size: 128
49
+ - total_eval_batch_size: 32
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: cosine
52
+ - lr_scheduler_warmup_steps: 120
53
+ - num_epochs: 1
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss |
58
+ |:-------------:|:-----:|:----:|:---------------:|
59
+ | 1.4601 | 0.05 | 100 | 1.3361 |
60
+ | 1.3324 | 0.1 | 200 | 1.2566 |
61
+ | 1.2946 | 0.14 | 300 | 1.2279 |
62
+ | 1.2767 | 0.19 | 400 | 1.2111 |
63
+ | 1.2298 | 0.24 | 500 | 1.1995 |
64
+ | 1.2247 | 0.29 | 600 | 1.1902 |
65
+ | 1.2208 | 0.34 | 700 | 1.1833 |
66
+ | 1.2375 | 0.39 | 800 | 1.1775 |
67
+ | 1.2038 | 0.43 | 900 | 1.1726 |
68
+ | 1.1926 | 0.48 | 1000 | 1.1683 |
69
+ | 1.1933 | 0.53 | 1100 | 1.1649 |
70
+ | 1.1893 | 0.58 | 1200 | 1.1618 |
71
+ | 1.2029 | 0.63 | 1300 | 1.1593 |
72
+ | 1.2201 | 0.68 | 1400 | 1.1572 |
73
+ | 1.1741 | 0.72 | 1500 | 1.1557 |
74
+ | 1.1813 | 0.77 | 1600 | 1.1545 |
75
+ | 1.1668 | 0.82 | 1700 | 1.1536 |
76
+ | 1.1495 | 0.87 | 1800 | 1.1530 |
77
+ | 1.1595 | 0.92 | 1900 | 1.1527 |
78
+ | 1.1607 | 0.97 | 2000 | 1.1526 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.36.2
84
+ - Pytorch 2.0.1+cu117
85
+ - Datasets 2.16.1
86
+ - Tokenizers 0.15.0
all_results.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "eval_loss": 1.1526199579238892,
4
+ "eval_runtime": 427.4467,
5
+ "eval_samples": 23110,
6
+ "eval_samples_per_second": 37.82,
7
+ "eval_steps_per_second": 1.184,
8
+ "train_loss": 1.2525324755820675,
9
+ "train_runtime": 32325.2724,
10
+ "train_samples": 725847,
11
+ "train_samples_per_second": 8.198,
12
+ "train_steps_per_second": 0.064
13
+ }
eval_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "eval_loss": 1.1526199579238892,
4
+ "eval_runtime": 427.4467,
5
+ "eval_samples": 23110,
6
+ "eval_samples_per_second": 37.82,
7
+ "eval_steps_per_second": 1.184
8
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.36.2",
6
+ "use_cache": false
7
+ }
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb7a92d60425e8c39cd0004b2dfa3b1788000ce4ef2adfdf098e437e7e45408a
3
+ size 4984275728
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43ec7693511be697bc2d8277e986388f7352ff1fb26820691e7ea7a9d34d6d35
3
+ size 4991625072
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4dce78bf6eb141f1a6b9e595b540367b27823d87fb2aa375702e5351df90ff65
3
+ size 2882730416
model.safetensors.index.json ADDED
@@ -0,0 +1,692 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 12858544128
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.0.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.0.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.0.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.0.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.0.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.0.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.0.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.0.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.0.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.0.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00003.safetensors",
27
+ "model.layers.0.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00003.safetensors",
28
+ "model.layers.0.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.0.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.0.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00003.safetensors",
31
+ "model.layers.0.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.0.block_sparse_moe.gate.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
36
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
37
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
38
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
39
+ "model.layers.1.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00003.safetensors",
40
+ "model.layers.1.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00003.safetensors",
41
+ "model.layers.1.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors",
42
+ "model.layers.1.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00003.safetensors",
43
+ "model.layers.1.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00003.safetensors",
44
+ "model.layers.1.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors",
45
+ "model.layers.1.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00003.safetensors",
46
+ "model.layers.1.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00003.safetensors",
47
+ "model.layers.1.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00003.safetensors",
48
+ "model.layers.1.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00003.safetensors",
49
+ "model.layers.1.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00003.safetensors",
50
+ "model.layers.1.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00003.safetensors",
51
+ "model.layers.1.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00003.safetensors",
52
+ "model.layers.1.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00003.safetensors",
53
+ "model.layers.1.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00003.safetensors",
54
+ "model.layers.1.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00003.safetensors",
55
+ "model.layers.1.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00003.safetensors",
56
+ "model.layers.1.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00003.safetensors",
57
+ "model.layers.1.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00003.safetensors",
58
+ "model.layers.1.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00003.safetensors",
59
+ "model.layers.1.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00003.safetensors",
60
+ "model.layers.1.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00003.safetensors",
61
+ "model.layers.1.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00003.safetensors",
62
+ "model.layers.1.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00003.safetensors",
63
+ "model.layers.1.block_sparse_moe.gate.weight": "model-00001-of-00003.safetensors",
64
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
65
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
66
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
67
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
68
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
69
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
70
+ "model.layers.10.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.10.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.10.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.10.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.10.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.10.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.10.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.10.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.10.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.10.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.10.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.10.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.10.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.10.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.10.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.10.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.10.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.10.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.10.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.10.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.10.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.10.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.10.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.10.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.10.block_sparse_moe.gate.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.11.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.11.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.11.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.11.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.11.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.11.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.11.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.11.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.11.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.11.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.11.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.11.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.11.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.11.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.11.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.11.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00003.safetensors",
117
+ "model.layers.11.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00003.safetensors",
118
+ "model.layers.11.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00003.safetensors",
119
+ "model.layers.11.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00003.safetensors",
120
+ "model.layers.11.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00003.safetensors",
121
+ "model.layers.11.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00003.safetensors",
122
+ "model.layers.11.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00003.safetensors",
123
+ "model.layers.11.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00003.safetensors",
124
+ "model.layers.11.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00003.safetensors",
125
+ "model.layers.11.block_sparse_moe.gate.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.12.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.12.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.12.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.12.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.12.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.12.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.12.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.12.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.12.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.12.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.12.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.12.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00003.safetensors",
144
+ "model.layers.12.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00003.safetensors",
145
+ "model.layers.12.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00003.safetensors",
146
+ "model.layers.12.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00003.safetensors",
147
+ "model.layers.12.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00003.safetensors",
148
+ "model.layers.12.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.12.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.12.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.12.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.12.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00003.safetensors",
153
+ "model.layers.12.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00003.safetensors",
154
+ "model.layers.12.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00003.safetensors",
155
+ "model.layers.12.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00003.safetensors",
156
+ "model.layers.12.block_sparse_moe.gate.weight": "model-00002-of-00003.safetensors",
157
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
158
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
159
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
160
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
161
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
162
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
163
+ "model.layers.13.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors",
164
+ "model.layers.13.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors",
165
+ "model.layers.13.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00003.safetensors",
166
+ "model.layers.13.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors",
167
+ "model.layers.13.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors",
168
+ "model.layers.13.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00003.safetensors",
169
+ "model.layers.13.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00003.safetensors",
170
+ "model.layers.13.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00003.safetensors",
171
+ "model.layers.13.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00003.safetensors",
172
+ "model.layers.13.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00003.safetensors",
173
+ "model.layers.13.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00003.safetensors",
174
+ "model.layers.13.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00003.safetensors",
175
+ "model.layers.13.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00003.safetensors",
176
+ "model.layers.13.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00003.safetensors",
177
+ "model.layers.13.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00003.safetensors",
178
+ "model.layers.13.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00003.safetensors",
179
+ "model.layers.13.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00003.safetensors",
180
+ "model.layers.13.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00003.safetensors",
181
+ "model.layers.13.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00003.safetensors",
182
+ "model.layers.13.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00003.safetensors",
183
+ "model.layers.13.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00003.safetensors",
184
+ "model.layers.13.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00003.safetensors",
185
+ "model.layers.13.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00003.safetensors",
186
+ "model.layers.13.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00003.safetensors",
187
+ "model.layers.13.block_sparse_moe.gate.weight": "model-00002-of-00003.safetensors",
188
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
189
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
190
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
191
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
192
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
193
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
194
+ "model.layers.14.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors",
195
+ "model.layers.14.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors",
196
+ "model.layers.14.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00003.safetensors",
197
+ "model.layers.14.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors",
198
+ "model.layers.14.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors",
199
+ "model.layers.14.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00003.safetensors",
200
+ "model.layers.14.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00003.safetensors",
201
+ "model.layers.14.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00003.safetensors",
202
+ "model.layers.14.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00003.safetensors",
203
+ "model.layers.14.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00003.safetensors",
204
+ "model.layers.14.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00003.safetensors",
205
+ "model.layers.14.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00003.safetensors",
206
+ "model.layers.14.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00003.safetensors",
207
+ "model.layers.14.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00003.safetensors",
208
+ "model.layers.14.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00003.safetensors",
209
+ "model.layers.14.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00003.safetensors",
210
+ "model.layers.14.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00003.safetensors",
211
+ "model.layers.14.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00003.safetensors",
212
+ "model.layers.14.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00003.safetensors",
213
+ "model.layers.14.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00003.safetensors",
214
+ "model.layers.14.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00003.safetensors",
215
+ "model.layers.14.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00003.safetensors",
216
+ "model.layers.14.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00003.safetensors",
217
+ "model.layers.14.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00003.safetensors",
218
+ "model.layers.14.block_sparse_moe.gate.weight": "model-00002-of-00003.safetensors",
219
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
220
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
221
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
222
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
223
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
224
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
225
+ "model.layers.15.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors",
226
+ "model.layers.15.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors",
227
+ "model.layers.15.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00003.safetensors",
228
+ "model.layers.15.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors",
229
+ "model.layers.15.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors",
230
+ "model.layers.15.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00003.safetensors",
231
+ "model.layers.15.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00003.safetensors",
232
+ "model.layers.15.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00003.safetensors",
233
+ "model.layers.15.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00003.safetensors",
234
+ "model.layers.15.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00003.safetensors",
235
+ "model.layers.15.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00003.safetensors",
236
+ "model.layers.15.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00003.safetensors",
237
+ "model.layers.15.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00003.safetensors",
238
+ "model.layers.15.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00003.safetensors",
239
+ "model.layers.15.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00003.safetensors",
240
+ "model.layers.15.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00003.safetensors",
241
+ "model.layers.15.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00003.safetensors",
242
+ "model.layers.15.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00003.safetensors",
243
+ "model.layers.15.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00003.safetensors",
244
+ "model.layers.15.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00003.safetensors",
245
+ "model.layers.15.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00003.safetensors",
246
+ "model.layers.15.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00003.safetensors",
247
+ "model.layers.15.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00003.safetensors",
248
+ "model.layers.15.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00003.safetensors",
249
+ "model.layers.15.block_sparse_moe.gate.weight": "model-00002-of-00003.safetensors",
250
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
251
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
252
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
253
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
254
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
255
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
256
+ "model.layers.16.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors",
257
+ "model.layers.16.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors",
258
+ "model.layers.16.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00003.safetensors",
259
+ "model.layers.16.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors",
260
+ "model.layers.16.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors",
261
+ "model.layers.16.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00003.safetensors",
262
+ "model.layers.16.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00003.safetensors",
263
+ "model.layers.16.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00003.safetensors",
264
+ "model.layers.16.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00003.safetensors",
265
+ "model.layers.16.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00003.safetensors",
266
+ "model.layers.16.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00003.safetensors",
267
+ "model.layers.16.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00003.safetensors",
268
+ "model.layers.16.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00003.safetensors",
269
+ "model.layers.16.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00003.safetensors",
270
+ "model.layers.16.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00003.safetensors",
271
+ "model.layers.16.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00003.safetensors",
272
+ "model.layers.16.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00003.safetensors",
273
+ "model.layers.16.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00003.safetensors",
274
+ "model.layers.16.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00003.safetensors",
275
+ "model.layers.16.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00003.safetensors",
276
+ "model.layers.16.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00003.safetensors",
277
+ "model.layers.16.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00003.safetensors",
278
+ "model.layers.16.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00003.safetensors",
279
+ "model.layers.16.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00003.safetensors",
280
+ "model.layers.16.block_sparse_moe.gate.weight": "model-00002-of-00003.safetensors",
281
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
282
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
283
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
284
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
285
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
286
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
287
+ "model.layers.17.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors",
288
+ "model.layers.17.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors",
289
+ "model.layers.17.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00003.safetensors",
290
+ "model.layers.17.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors",
291
+ "model.layers.17.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00003.safetensors",
292
+ "model.layers.17.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00003.safetensors",
293
+ "model.layers.17.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00003.safetensors",
294
+ "model.layers.17.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00003.safetensors",
295
+ "model.layers.17.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00003.safetensors",
296
+ "model.layers.17.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00003.safetensors",
297
+ "model.layers.17.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00003.safetensors",
298
+ "model.layers.17.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00003.safetensors",
299
+ "model.layers.17.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00003.safetensors",
300
+ "model.layers.17.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00003.safetensors",
301
+ "model.layers.17.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00003.safetensors",
302
+ "model.layers.17.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00003.safetensors",
303
+ "model.layers.17.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00003.safetensors",
304
+ "model.layers.17.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00003.safetensors",
305
+ "model.layers.17.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00003.safetensors",
306
+ "model.layers.17.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00003.safetensors",
307
+ "model.layers.17.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00003.safetensors",
308
+ "model.layers.17.block_sparse_moe.experts.7.w1.weight": "model-00003-of-00003.safetensors",
309
+ "model.layers.17.block_sparse_moe.experts.7.w2.weight": "model-00003-of-00003.safetensors",
310
+ "model.layers.17.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00003.safetensors",
311
+ "model.layers.17.block_sparse_moe.gate.weight": "model-00002-of-00003.safetensors",
312
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00003.safetensors",
313
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
314
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
315
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
316
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
317
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
318
+ "model.layers.18.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors",
319
+ "model.layers.18.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00003.safetensors",
320
+ "model.layers.18.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00003.safetensors",
321
+ "model.layers.18.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors",
322
+ "model.layers.18.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00003.safetensors",
323
+ "model.layers.18.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00003.safetensors",
324
+ "model.layers.18.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00003.safetensors",
325
+ "model.layers.18.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00003.safetensors",
326
+ "model.layers.18.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00003.safetensors",
327
+ "model.layers.18.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00003.safetensors",
328
+ "model.layers.18.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00003.safetensors",
329
+ "model.layers.18.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00003.safetensors",
330
+ "model.layers.18.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00003.safetensors",
331
+ "model.layers.18.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00003.safetensors",
332
+ "model.layers.18.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00003.safetensors",
333
+ "model.layers.18.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00003.safetensors",
334
+ "model.layers.18.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00003.safetensors",
335
+ "model.layers.18.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00003.safetensors",
336
+ "model.layers.18.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00003.safetensors",
337
+ "model.layers.18.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00003.safetensors",
338
+ "model.layers.18.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00003.safetensors",
339
+ "model.layers.18.block_sparse_moe.experts.7.w1.weight": "model-00003-of-00003.safetensors",
340
+ "model.layers.18.block_sparse_moe.experts.7.w2.weight": "model-00003-of-00003.safetensors",
341
+ "model.layers.18.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00003.safetensors",
342
+ "model.layers.18.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors",
343
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00003.safetensors",
344
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
345
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
346
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
347
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
348
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
349
+ "model.layers.19.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors",
350
+ "model.layers.19.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00003.safetensors",
351
+ "model.layers.19.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00003.safetensors",
352
+ "model.layers.19.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors",
353
+ "model.layers.19.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00003.safetensors",
354
+ "model.layers.19.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00003.safetensors",
355
+ "model.layers.19.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00003.safetensors",
356
+ "model.layers.19.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00003.safetensors",
357
+ "model.layers.19.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00003.safetensors",
358
+ "model.layers.19.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00003.safetensors",
359
+ "model.layers.19.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00003.safetensors",
360
+ "model.layers.19.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00003.safetensors",
361
+ "model.layers.19.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00003.safetensors",
362
+ "model.layers.19.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00003.safetensors",
363
+ "model.layers.19.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00003.safetensors",
364
+ "model.layers.19.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00003.safetensors",
365
+ "model.layers.19.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00003.safetensors",
366
+ "model.layers.19.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00003.safetensors",
367
+ "model.layers.19.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00003.safetensors",
368
+ "model.layers.19.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00003.safetensors",
369
+ "model.layers.19.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00003.safetensors",
370
+ "model.layers.19.block_sparse_moe.experts.7.w1.weight": "model-00003-of-00003.safetensors",
371
+ "model.layers.19.block_sparse_moe.experts.7.w2.weight": "model-00003-of-00003.safetensors",
372
+ "model.layers.19.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00003.safetensors",
373
+ "model.layers.19.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors",
374
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00003.safetensors",
375
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
376
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
377
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
378
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
379
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
380
+ "model.layers.2.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00003.safetensors",
381
+ "model.layers.2.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00003.safetensors",
382
+ "model.layers.2.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors",
383
+ "model.layers.2.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00003.safetensors",
384
+ "model.layers.2.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00003.safetensors",
385
+ "model.layers.2.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors",
386
+ "model.layers.2.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00003.safetensors",
387
+ "model.layers.2.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00003.safetensors",
388
+ "model.layers.2.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00003.safetensors",
389
+ "model.layers.2.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00003.safetensors",
390
+ "model.layers.2.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00003.safetensors",
391
+ "model.layers.2.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00003.safetensors",
392
+ "model.layers.2.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00003.safetensors",
393
+ "model.layers.2.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00003.safetensors",
394
+ "model.layers.2.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00003.safetensors",
395
+ "model.layers.2.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00003.safetensors",
396
+ "model.layers.2.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00003.safetensors",
397
+ "model.layers.2.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00003.safetensors",
398
+ "model.layers.2.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00003.safetensors",
399
+ "model.layers.2.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00003.safetensors",
400
+ "model.layers.2.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00003.safetensors",
401
+ "model.layers.2.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00003.safetensors",
402
+ "model.layers.2.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00003.safetensors",
403
+ "model.layers.2.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00003.safetensors",
404
+ "model.layers.2.block_sparse_moe.gate.weight": "model-00001-of-00003.safetensors",
405
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
406
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
407
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
408
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
409
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
410
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
411
+ "model.layers.20.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors",
412
+ "model.layers.20.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00003.safetensors",
413
+ "model.layers.20.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00003.safetensors",
414
+ "model.layers.20.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors",
415
+ "model.layers.20.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00003.safetensors",
416
+ "model.layers.20.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00003.safetensors",
417
+ "model.layers.20.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00003.safetensors",
418
+ "model.layers.20.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00003.safetensors",
419
+ "model.layers.20.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00003.safetensors",
420
+ "model.layers.20.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00003.safetensors",
421
+ "model.layers.20.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00003.safetensors",
422
+ "model.layers.20.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00003.safetensors",
423
+ "model.layers.20.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00003.safetensors",
424
+ "model.layers.20.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00003.safetensors",
425
+ "model.layers.20.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00003.safetensors",
426
+ "model.layers.20.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00003.safetensors",
427
+ "model.layers.20.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00003.safetensors",
428
+ "model.layers.20.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00003.safetensors",
429
+ "model.layers.20.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00003.safetensors",
430
+ "model.layers.20.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00003.safetensors",
431
+ "model.layers.20.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00003.safetensors",
432
+ "model.layers.20.block_sparse_moe.experts.7.w1.weight": "model-00003-of-00003.safetensors",
433
+ "model.layers.20.block_sparse_moe.experts.7.w2.weight": "model-00003-of-00003.safetensors",
434
+ "model.layers.20.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00003.safetensors",
435
+ "model.layers.20.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors",
436
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00003.safetensors",
437
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
438
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
439
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
440
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
441
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
442
+ "model.layers.21.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors",
443
+ "model.layers.21.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00003.safetensors",
444
+ "model.layers.21.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00003.safetensors",
445
+ "model.layers.21.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors",
446
+ "model.layers.21.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00003.safetensors",
447
+ "model.layers.21.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00003.safetensors",
448
+ "model.layers.21.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00003.safetensors",
449
+ "model.layers.21.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00003.safetensors",
450
+ "model.layers.21.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00003.safetensors",
451
+ "model.layers.21.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00003.safetensors",
452
+ "model.layers.21.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00003.safetensors",
453
+ "model.layers.21.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00003.safetensors",
454
+ "model.layers.21.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00003.safetensors",
455
+ "model.layers.21.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00003.safetensors",
456
+ "model.layers.21.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00003.safetensors",
457
+ "model.layers.21.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00003.safetensors",
458
+ "model.layers.21.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00003.safetensors",
459
+ "model.layers.21.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00003.safetensors",
460
+ "model.layers.21.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00003.safetensors",
461
+ "model.layers.21.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00003.safetensors",
462
+ "model.layers.21.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00003.safetensors",
463
+ "model.layers.21.block_sparse_moe.experts.7.w1.weight": "model-00003-of-00003.safetensors",
464
+ "model.layers.21.block_sparse_moe.experts.7.w2.weight": "model-00003-of-00003.safetensors",
465
+ "model.layers.21.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00003.safetensors",
466
+ "model.layers.21.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors",
467
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00003.safetensors",
468
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
469
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
470
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
471
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
472
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
473
+ "model.layers.3.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00003.safetensors",
474
+ "model.layers.3.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00003.safetensors",
475
+ "model.layers.3.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors",
476
+ "model.layers.3.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00003.safetensors",
477
+ "model.layers.3.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00003.safetensors",
478
+ "model.layers.3.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors",
479
+ "model.layers.3.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00003.safetensors",
480
+ "model.layers.3.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00003.safetensors",
481
+ "model.layers.3.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00003.safetensors",
482
+ "model.layers.3.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00003.safetensors",
483
+ "model.layers.3.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00003.safetensors",
484
+ "model.layers.3.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00003.safetensors",
485
+ "model.layers.3.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00003.safetensors",
486
+ "model.layers.3.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00003.safetensors",
487
+ "model.layers.3.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00003.safetensors",
488
+ "model.layers.3.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00003.safetensors",
489
+ "model.layers.3.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00003.safetensors",
490
+ "model.layers.3.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00003.safetensors",
491
+ "model.layers.3.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00003.safetensors",
492
+ "model.layers.3.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00003.safetensors",
493
+ "model.layers.3.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00003.safetensors",
494
+ "model.layers.3.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00003.safetensors",
495
+ "model.layers.3.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00003.safetensors",
496
+ "model.layers.3.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00003.safetensors",
497
+ "model.layers.3.block_sparse_moe.gate.weight": "model-00001-of-00003.safetensors",
498
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
499
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
500
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
501
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
502
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
503
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
504
+ "model.layers.4.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00003.safetensors",
505
+ "model.layers.4.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00003.safetensors",
506
+ "model.layers.4.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors",
507
+ "model.layers.4.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00003.safetensors",
508
+ "model.layers.4.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00003.safetensors",
509
+ "model.layers.4.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors",
510
+ "model.layers.4.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00003.safetensors",
511
+ "model.layers.4.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00003.safetensors",
512
+ "model.layers.4.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00003.safetensors",
513
+ "model.layers.4.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00003.safetensors",
514
+ "model.layers.4.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00003.safetensors",
515
+ "model.layers.4.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00003.safetensors",
516
+ "model.layers.4.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00003.safetensors",
517
+ "model.layers.4.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00003.safetensors",
518
+ "model.layers.4.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00003.safetensors",
519
+ "model.layers.4.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00003.safetensors",
520
+ "model.layers.4.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00003.safetensors",
521
+ "model.layers.4.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00003.safetensors",
522
+ "model.layers.4.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00003.safetensors",
523
+ "model.layers.4.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00003.safetensors",
524
+ "model.layers.4.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00003.safetensors",
525
+ "model.layers.4.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00003.safetensors",
526
+ "model.layers.4.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00003.safetensors",
527
+ "model.layers.4.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00003.safetensors",
528
+ "model.layers.4.block_sparse_moe.gate.weight": "model-00001-of-00003.safetensors",
529
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
530
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
531
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
532
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
533
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
534
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
535
+ "model.layers.5.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00003.safetensors",
536
+ "model.layers.5.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00003.safetensors",
537
+ "model.layers.5.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors",
538
+ "model.layers.5.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00003.safetensors",
539
+ "model.layers.5.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00003.safetensors",
540
+ "model.layers.5.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors",
541
+ "model.layers.5.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00003.safetensors",
542
+ "model.layers.5.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00003.safetensors",
543
+ "model.layers.5.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00003.safetensors",
544
+ "model.layers.5.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00003.safetensors",
545
+ "model.layers.5.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00003.safetensors",
546
+ "model.layers.5.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00003.safetensors",
547
+ "model.layers.5.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00003.safetensors",
548
+ "model.layers.5.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00003.safetensors",
549
+ "model.layers.5.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00003.safetensors",
550
+ "model.layers.5.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00003.safetensors",
551
+ "model.layers.5.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00003.safetensors",
552
+ "model.layers.5.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00003.safetensors",
553
+ "model.layers.5.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00003.safetensors",
554
+ "model.layers.5.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00003.safetensors",
555
+ "model.layers.5.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00003.safetensors",
556
+ "model.layers.5.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00003.safetensors",
557
+ "model.layers.5.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00003.safetensors",
558
+ "model.layers.5.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00003.safetensors",
559
+ "model.layers.5.block_sparse_moe.gate.weight": "model-00001-of-00003.safetensors",
560
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
561
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
562
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
563
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
564
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
565
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
566
+ "model.layers.6.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00003.safetensors",
567
+ "model.layers.6.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00003.safetensors",
568
+ "model.layers.6.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors",
569
+ "model.layers.6.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00003.safetensors",
570
+ "model.layers.6.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00003.safetensors",
571
+ "model.layers.6.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors",
572
+ "model.layers.6.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00003.safetensors",
573
+ "model.layers.6.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00003.safetensors",
574
+ "model.layers.6.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00003.safetensors",
575
+ "model.layers.6.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00003.safetensors",
576
+ "model.layers.6.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00003.safetensors",
577
+ "model.layers.6.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00003.safetensors",
578
+ "model.layers.6.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00003.safetensors",
579
+ "model.layers.6.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00003.safetensors",
580
+ "model.layers.6.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00003.safetensors",
581
+ "model.layers.6.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00003.safetensors",
582
+ "model.layers.6.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00003.safetensors",
583
+ "model.layers.6.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00003.safetensors",
584
+ "model.layers.6.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00003.safetensors",
585
+ "model.layers.6.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00003.safetensors",
586
+ "model.layers.6.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00003.safetensors",
587
+ "model.layers.6.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00003.safetensors",
588
+ "model.layers.6.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00003.safetensors",
589
+ "model.layers.6.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00003.safetensors",
590
+ "model.layers.6.block_sparse_moe.gate.weight": "model-00001-of-00003.safetensors",
591
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
592
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
593
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
594
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
595
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
596
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
597
+ "model.layers.7.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00003.safetensors",
598
+ "model.layers.7.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00003.safetensors",
599
+ "model.layers.7.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors",
600
+ "model.layers.7.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00003.safetensors",
601
+ "model.layers.7.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00003.safetensors",
602
+ "model.layers.7.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors",
603
+ "model.layers.7.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00003.safetensors",
604
+ "model.layers.7.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00003.safetensors",
605
+ "model.layers.7.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00003.safetensors",
606
+ "model.layers.7.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00003.safetensors",
607
+ "model.layers.7.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00003.safetensors",
608
+ "model.layers.7.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00003.safetensors",
609
+ "model.layers.7.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00003.safetensors",
610
+ "model.layers.7.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00003.safetensors",
611
+ "model.layers.7.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00003.safetensors",
612
+ "model.layers.7.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00003.safetensors",
613
+ "model.layers.7.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00003.safetensors",
614
+ "model.layers.7.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00003.safetensors",
615
+ "model.layers.7.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00003.safetensors",
616
+ "model.layers.7.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00003.safetensors",
617
+ "model.layers.7.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00003.safetensors",
618
+ "model.layers.7.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00003.safetensors",
619
+ "model.layers.7.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00003.safetensors",
620
+ "model.layers.7.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00003.safetensors",
621
+ "model.layers.7.block_sparse_moe.gate.weight": "model-00001-of-00003.safetensors",
622
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
623
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
624
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
625
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
626
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
627
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
628
+ "model.layers.8.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00003.safetensors",
629
+ "model.layers.8.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00003.safetensors",
630
+ "model.layers.8.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors",
631
+ "model.layers.8.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00003.safetensors",
632
+ "model.layers.8.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00003.safetensors",
633
+ "model.layers.8.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors",
634
+ "model.layers.8.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00003.safetensors",
635
+ "model.layers.8.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00003.safetensors",
636
+ "model.layers.8.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00003.safetensors",
637
+ "model.layers.8.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00003.safetensors",
638
+ "model.layers.8.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00003.safetensors",
639
+ "model.layers.8.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00003.safetensors",
640
+ "model.layers.8.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00003.safetensors",
641
+ "model.layers.8.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00003.safetensors",
642
+ "model.layers.8.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00003.safetensors",
643
+ "model.layers.8.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00003.safetensors",
644
+ "model.layers.8.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00003.safetensors",
645
+ "model.layers.8.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00003.safetensors",
646
+ "model.layers.8.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00003.safetensors",
647
+ "model.layers.8.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00003.safetensors",
648
+ "model.layers.8.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00003.safetensors",
649
+ "model.layers.8.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00003.safetensors",
650
+ "model.layers.8.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00003.safetensors",
651
+ "model.layers.8.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00003.safetensors",
652
+ "model.layers.8.block_sparse_moe.gate.weight": "model-00001-of-00003.safetensors",
653
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00003.safetensors",
654
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
655
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
656
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
657
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
658
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
659
+ "model.layers.9.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors",
660
+ "model.layers.9.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors",
661
+ "model.layers.9.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00003.safetensors",
662
+ "model.layers.9.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors",
663
+ "model.layers.9.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors",
664
+ "model.layers.9.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00003.safetensors",
665
+ "model.layers.9.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00003.safetensors",
666
+ "model.layers.9.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00003.safetensors",
667
+ "model.layers.9.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00003.safetensors",
668
+ "model.layers.9.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00003.safetensors",
669
+ "model.layers.9.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00003.safetensors",
670
+ "model.layers.9.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00003.safetensors",
671
+ "model.layers.9.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00003.safetensors",
672
+ "model.layers.9.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00003.safetensors",
673
+ "model.layers.9.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00003.safetensors",
674
+ "model.layers.9.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00003.safetensors",
675
+ "model.layers.9.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00003.safetensors",
676
+ "model.layers.9.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00003.safetensors",
677
+ "model.layers.9.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00003.safetensors",
678
+ "model.layers.9.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00003.safetensors",
679
+ "model.layers.9.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00003.safetensors",
680
+ "model.layers.9.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00003.safetensors",
681
+ "model.layers.9.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00003.safetensors",
682
+ "model.layers.9.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00003.safetensors",
683
+ "model.layers.9.block_sparse_moe.gate.weight": "model-00002-of-00003.safetensors",
684
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00003.safetensors",
685
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
686
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
687
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
688
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
689
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
690
+ "model.norm.weight": "model-00003-of-00003.safetensors"
691
+ }
692
+ }
runs/Jan17_08-58-53_main1/events.out.tfevents.1705482041.main1.37007.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:095858297648ff3c285d0ae10051bad8f360fb6418cfbcf474e88c9b01ac267e
3
- size 73007
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f13b3f40f09601bdfd299f8bd01413ca8514ff44c661f1a2d40374e784d0259
3
+ size 75559
runs/Jan17_08-58-53_main1/events.out.tfevents.1705514792.main1.37007.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:278fd533b64811d3ad643a0ca23553dda14a8189fc3fc5abaf270dab9d416287
3
+ size 359
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "train_loss": 1.2525324755820675,
4
+ "train_runtime": 32325.2724,
5
+ "train_samples": 725847,
6
+ "train_samples_per_second": 8.198,
7
+ "train_steps_per_second": 0.064
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,2680 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.1526199579238892,
3
+ "best_model_checkpoint": "data/tinyllama_moe_sft_ultrachat-slimorca/checkpoint-2000",
4
+ "epoch": 0.9997585124366095,
5
+ "eval_steps": 100,
6
+ "global_step": 2070,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 1.6666666666666668e-07,
14
+ "loss": 2.9792,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 8.333333333333333e-07,
20
+ "loss": 2.9452,
21
+ "step": 5
22
+ },
23
+ {
24
+ "epoch": 0.0,
25
+ "learning_rate": 1.6666666666666667e-06,
26
+ "loss": 2.9114,
27
+ "step": 10
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 2.5e-06,
32
+ "loss": 2.8843,
33
+ "step": 15
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 3.3333333333333333e-06,
38
+ "loss": 2.6761,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 4.166666666666667e-06,
44
+ "loss": 2.3539,
45
+ "step": 25
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "learning_rate": 5e-06,
50
+ "loss": 2.1166,
51
+ "step": 30
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "learning_rate": 5.833333333333334e-06,
56
+ "loss": 2.0101,
57
+ "step": 35
58
+ },
59
+ {
60
+ "epoch": 0.02,
61
+ "learning_rate": 6.666666666666667e-06,
62
+ "loss": 1.8725,
63
+ "step": 40
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 7.500000000000001e-06,
68
+ "loss": 1.7979,
69
+ "step": 45
70
+ },
71
+ {
72
+ "epoch": 0.02,
73
+ "learning_rate": 8.333333333333334e-06,
74
+ "loss": 1.7447,
75
+ "step": 50
76
+ },
77
+ {
78
+ "epoch": 0.03,
79
+ "learning_rate": 9.166666666666666e-06,
80
+ "loss": 1.6985,
81
+ "step": 55
82
+ },
83
+ {
84
+ "epoch": 0.03,
85
+ "learning_rate": 1e-05,
86
+ "loss": 1.6134,
87
+ "step": 60
88
+ },
89
+ {
90
+ "epoch": 0.03,
91
+ "learning_rate": 1.0833333333333334e-05,
92
+ "loss": 1.6174,
93
+ "step": 65
94
+ },
95
+ {
96
+ "epoch": 0.03,
97
+ "learning_rate": 1.1666666666666668e-05,
98
+ "loss": 1.5786,
99
+ "step": 70
100
+ },
101
+ {
102
+ "epoch": 0.04,
103
+ "learning_rate": 1.25e-05,
104
+ "loss": 1.5374,
105
+ "step": 75
106
+ },
107
+ {
108
+ "epoch": 0.04,
109
+ "learning_rate": 1.3333333333333333e-05,
110
+ "loss": 1.523,
111
+ "step": 80
112
+ },
113
+ {
114
+ "epoch": 0.04,
115
+ "learning_rate": 1.416666666666667e-05,
116
+ "loss": 1.5384,
117
+ "step": 85
118
+ },
119
+ {
120
+ "epoch": 0.04,
121
+ "learning_rate": 1.5000000000000002e-05,
122
+ "loss": 1.4798,
123
+ "step": 90
124
+ },
125
+ {
126
+ "epoch": 0.05,
127
+ "learning_rate": 1.5833333333333333e-05,
128
+ "loss": 1.4584,
129
+ "step": 95
130
+ },
131
+ {
132
+ "epoch": 0.05,
133
+ "learning_rate": 1.6666666666666667e-05,
134
+ "loss": 1.4601,
135
+ "step": 100
136
+ },
137
+ {
138
+ "epoch": 0.05,
139
+ "eval_loss": 1.3360612392425537,
140
+ "eval_runtime": 428.8225,
141
+ "eval_samples_per_second": 37.699,
142
+ "eval_steps_per_second": 1.18,
143
+ "step": 100
144
+ },
145
+ {
146
+ "epoch": 0.05,
147
+ "learning_rate": 1.7500000000000002e-05,
148
+ "loss": 1.4256,
149
+ "step": 105
150
+ },
151
+ {
152
+ "epoch": 0.05,
153
+ "learning_rate": 1.8333333333333333e-05,
154
+ "loss": 1.4164,
155
+ "step": 110
156
+ },
157
+ {
158
+ "epoch": 0.06,
159
+ "learning_rate": 1.916666666666667e-05,
160
+ "loss": 1.427,
161
+ "step": 115
162
+ },
163
+ {
164
+ "epoch": 0.06,
165
+ "learning_rate": 2e-05,
166
+ "loss": 1.4041,
167
+ "step": 120
168
+ },
169
+ {
170
+ "epoch": 0.06,
171
+ "learning_rate": 1.9999675557165282e-05,
172
+ "loss": 1.404,
173
+ "step": 125
174
+ },
175
+ {
176
+ "epoch": 0.06,
177
+ "learning_rate": 1.9998702249713747e-05,
178
+ "loss": 1.4163,
179
+ "step": 130
180
+ },
181
+ {
182
+ "epoch": 0.07,
183
+ "learning_rate": 1.9997080140801932e-05,
184
+ "loss": 1.3984,
185
+ "step": 135
186
+ },
187
+ {
188
+ "epoch": 0.07,
189
+ "learning_rate": 1.9994809335686152e-05,
190
+ "loss": 1.3717,
191
+ "step": 140
192
+ },
193
+ {
194
+ "epoch": 0.07,
195
+ "learning_rate": 1.9991889981715696e-05,
196
+ "loss": 1.3905,
197
+ "step": 145
198
+ },
199
+ {
200
+ "epoch": 0.07,
201
+ "learning_rate": 1.998832226832327e-05,
202
+ "loss": 1.3486,
203
+ "step": 150
204
+ },
205
+ {
206
+ "epoch": 0.07,
207
+ "learning_rate": 1.9984106427012667e-05,
208
+ "loss": 1.3748,
209
+ "step": 155
210
+ },
211
+ {
212
+ "epoch": 0.08,
213
+ "learning_rate": 1.9979242731343803e-05,
214
+ "loss": 1.3651,
215
+ "step": 160
216
+ },
217
+ {
218
+ "epoch": 0.08,
219
+ "learning_rate": 1.9973731496914914e-05,
220
+ "loss": 1.3452,
221
+ "step": 165
222
+ },
223
+ {
224
+ "epoch": 0.08,
225
+ "learning_rate": 1.9967573081342103e-05,
226
+ "loss": 1.3533,
227
+ "step": 170
228
+ },
229
+ {
230
+ "epoch": 0.08,
231
+ "learning_rate": 1.9960767884236132e-05,
232
+ "loss": 1.3422,
233
+ "step": 175
234
+ },
235
+ {
236
+ "epoch": 0.09,
237
+ "learning_rate": 1.995331634717649e-05,
238
+ "loss": 1.3161,
239
+ "step": 180
240
+ },
241
+ {
242
+ "epoch": 0.09,
243
+ "learning_rate": 1.9945218953682736e-05,
244
+ "loss": 1.341,
245
+ "step": 185
246
+ },
247
+ {
248
+ "epoch": 0.09,
249
+ "learning_rate": 1.9936476229183133e-05,
250
+ "loss": 1.3373,
251
+ "step": 190
252
+ },
253
+ {
254
+ "epoch": 0.09,
255
+ "learning_rate": 1.992708874098054e-05,
256
+ "loss": 1.3365,
257
+ "step": 195
258
+ },
259
+ {
260
+ "epoch": 0.1,
261
+ "learning_rate": 1.9917057098215624e-05,
262
+ "loss": 1.3324,
263
+ "step": 200
264
+ },
265
+ {
266
+ "epoch": 0.1,
267
+ "eval_loss": 1.2566393613815308,
268
+ "eval_runtime": 585.8351,
269
+ "eval_samples_per_second": 27.595,
270
+ "eval_steps_per_second": 0.864,
271
+ "step": 200
272
+ },
273
+ {
274
+ "epoch": 0.1,
275
+ "learning_rate": 1.9906381951827295e-05,
276
+ "loss": 1.3309,
277
+ "step": 205
278
+ },
279
+ {
280
+ "epoch": 0.1,
281
+ "learning_rate": 1.9895063994510512e-05,
282
+ "loss": 1.3236,
283
+ "step": 210
284
+ },
285
+ {
286
+ "epoch": 0.1,
287
+ "learning_rate": 1.9883103960671305e-05,
288
+ "loss": 1.3254,
289
+ "step": 215
290
+ },
291
+ {
292
+ "epoch": 0.11,
293
+ "learning_rate": 1.9870502626379127e-05,
294
+ "loss": 1.3107,
295
+ "step": 220
296
+ },
297
+ {
298
+ "epoch": 0.11,
299
+ "learning_rate": 1.985726080931651e-05,
300
+ "loss": 1.3345,
301
+ "step": 225
302
+ },
303
+ {
304
+ "epoch": 0.11,
305
+ "learning_rate": 1.9843379368725978e-05,
306
+ "loss": 1.3303,
307
+ "step": 230
308
+ },
309
+ {
310
+ "epoch": 0.11,
311
+ "learning_rate": 1.9828859205354326e-05,
312
+ "loss": 1.3179,
313
+ "step": 235
314
+ },
315
+ {
316
+ "epoch": 0.12,
317
+ "learning_rate": 1.9813701261394136e-05,
318
+ "loss": 1.2992,
319
+ "step": 240
320
+ },
321
+ {
322
+ "epoch": 0.12,
323
+ "learning_rate": 1.979790652042268e-05,
324
+ "loss": 1.3117,
325
+ "step": 245
326
+ },
327
+ {
328
+ "epoch": 0.12,
329
+ "learning_rate": 1.9781476007338058e-05,
330
+ "loss": 1.3035,
331
+ "step": 250
332
+ },
333
+ {
334
+ "epoch": 0.12,
335
+ "learning_rate": 1.9764410788292724e-05,
336
+ "loss": 1.2918,
337
+ "step": 255
338
+ },
339
+ {
340
+ "epoch": 0.13,
341
+ "learning_rate": 1.9746711970624282e-05,
342
+ "loss": 1.3105,
343
+ "step": 260
344
+ },
345
+ {
346
+ "epoch": 0.13,
347
+ "learning_rate": 1.9728380702783644e-05,
348
+ "loss": 1.3266,
349
+ "step": 265
350
+ },
351
+ {
352
+ "epoch": 0.13,
353
+ "learning_rate": 1.9709418174260523e-05,
354
+ "loss": 1.3068,
355
+ "step": 270
356
+ },
357
+ {
358
+ "epoch": 0.13,
359
+ "learning_rate": 1.968982561550621e-05,
360
+ "loss": 1.3045,
361
+ "step": 275
362
+ },
363
+ {
364
+ "epoch": 0.14,
365
+ "learning_rate": 1.9669604297853766e-05,
366
+ "loss": 1.3042,
367
+ "step": 280
368
+ },
369
+ {
370
+ "epoch": 0.14,
371
+ "learning_rate": 1.9648755533435517e-05,
372
+ "loss": 1.3033,
373
+ "step": 285
374
+ },
375
+ {
376
+ "epoch": 0.14,
377
+ "learning_rate": 1.962728067509791e-05,
378
+ "loss": 1.2891,
379
+ "step": 290
380
+ },
381
+ {
382
+ "epoch": 0.14,
383
+ "learning_rate": 1.9605181116313725e-05,
384
+ "loss": 1.2984,
385
+ "step": 295
386
+ },
387
+ {
388
+ "epoch": 0.14,
389
+ "learning_rate": 1.9582458291091664e-05,
390
+ "loss": 1.2946,
391
+ "step": 300
392
+ },
393
+ {
394
+ "epoch": 0.14,
395
+ "eval_loss": 1.2279455661773682,
396
+ "eval_runtime": 426.1287,
397
+ "eval_samples_per_second": 37.937,
398
+ "eval_steps_per_second": 1.187,
399
+ "step": 300
400
+ },
401
+ {
402
+ "epoch": 0.15,
403
+ "learning_rate": 1.955911367388329e-05,
404
+ "loss": 1.2973,
405
+ "step": 305
406
+ },
407
+ {
408
+ "epoch": 0.15,
409
+ "learning_rate": 1.9535148779487365e-05,
410
+ "loss": 1.2933,
411
+ "step": 310
412
+ },
413
+ {
414
+ "epoch": 0.15,
415
+ "learning_rate": 1.9510565162951538e-05,
416
+ "loss": 1.2931,
417
+ "step": 315
418
+ },
419
+ {
420
+ "epoch": 0.15,
421
+ "learning_rate": 1.9485364419471454e-05,
422
+ "loss": 1.2918,
423
+ "step": 320
424
+ },
425
+ {
426
+ "epoch": 0.16,
427
+ "learning_rate": 1.9459548184287254e-05,
428
+ "loss": 1.2965,
429
+ "step": 325
430
+ },
431
+ {
432
+ "epoch": 0.16,
433
+ "learning_rate": 1.9433118132577432e-05,
434
+ "loss": 1.2924,
435
+ "step": 330
436
+ },
437
+ {
438
+ "epoch": 0.16,
439
+ "learning_rate": 1.9406075979350175e-05,
440
+ "loss": 1.3012,
441
+ "step": 335
442
+ },
443
+ {
444
+ "epoch": 0.16,
445
+ "learning_rate": 1.9378423479332045e-05,
446
+ "loss": 1.2948,
447
+ "step": 340
448
+ },
449
+ {
450
+ "epoch": 0.17,
451
+ "learning_rate": 1.9350162426854152e-05,
452
+ "loss": 1.2708,
453
+ "step": 345
454
+ },
455
+ {
456
+ "epoch": 0.17,
457
+ "learning_rate": 1.932129465573568e-05,
458
+ "loss": 1.2749,
459
+ "step": 350
460
+ },
461
+ {
462
+ "epoch": 0.17,
463
+ "learning_rate": 1.9291822039164934e-05,
464
+ "loss": 1.2849,
465
+ "step": 355
466
+ },
467
+ {
468
+ "epoch": 0.17,
469
+ "learning_rate": 1.9261746489577767e-05,
470
+ "loss": 1.2926,
471
+ "step": 360
472
+ },
473
+ {
474
+ "epoch": 0.18,
475
+ "learning_rate": 1.923106995853349e-05,
476
+ "loss": 1.2743,
477
+ "step": 365
478
+ },
479
+ {
480
+ "epoch": 0.18,
481
+ "learning_rate": 1.9199794436588244e-05,
482
+ "loss": 1.2767,
483
+ "step": 370
484
+ },
485
+ {
486
+ "epoch": 0.18,
487
+ "learning_rate": 1.9167921953165827e-05,
488
+ "loss": 1.2673,
489
+ "step": 375
490
+ },
491
+ {
492
+ "epoch": 0.18,
493
+ "learning_rate": 1.913545457642601e-05,
494
+ "loss": 1.2751,
495
+ "step": 380
496
+ },
497
+ {
498
+ "epoch": 0.19,
499
+ "learning_rate": 1.9102394413130348e-05,
500
+ "loss": 1.2782,
501
+ "step": 385
502
+ },
503
+ {
504
+ "epoch": 0.19,
505
+ "learning_rate": 1.9068743608505454e-05,
506
+ "loss": 1.2673,
507
+ "step": 390
508
+ },
509
+ {
510
+ "epoch": 0.19,
511
+ "learning_rate": 1.9034504346103825e-05,
512
+ "loss": 1.2675,
513
+ "step": 395
514
+ },
515
+ {
516
+ "epoch": 0.19,
517
+ "learning_rate": 1.8999678847662124e-05,
518
+ "loss": 1.2767,
519
+ "step": 400
520
+ },
521
+ {
522
+ "epoch": 0.19,
523
+ "eval_loss": 1.2110730409622192,
524
+ "eval_runtime": 424.7414,
525
+ "eval_samples_per_second": 38.061,
526
+ "eval_steps_per_second": 1.191,
527
+ "step": 400
528
+ },
529
+ {
530
+ "epoch": 0.2,
531
+ "learning_rate": 1.896426937295704e-05,
532
+ "loss": 1.2654,
533
+ "step": 405
534
+ },
535
+ {
536
+ "epoch": 0.2,
537
+ "learning_rate": 1.892827821965864e-05,
538
+ "loss": 1.2771,
539
+ "step": 410
540
+ },
541
+ {
542
+ "epoch": 0.2,
543
+ "learning_rate": 1.8891707723181294e-05,
544
+ "loss": 1.2757,
545
+ "step": 415
546
+ },
547
+ {
548
+ "epoch": 0.2,
549
+ "learning_rate": 1.8854560256532098e-05,
550
+ "loss": 1.2621,
551
+ "step": 420
552
+ },
553
+ {
554
+ "epoch": 0.21,
555
+ "learning_rate": 1.881683823015694e-05,
556
+ "loss": 1.2785,
557
+ "step": 425
558
+ },
559
+ {
560
+ "epoch": 0.21,
561
+ "learning_rate": 1.8778544091784047e-05,
562
+ "loss": 1.252,
563
+ "step": 430
564
+ },
565
+ {
566
+ "epoch": 0.21,
567
+ "learning_rate": 1.873968032626518e-05,
568
+ "loss": 1.2634,
569
+ "step": 435
570
+ },
571
+ {
572
+ "epoch": 0.21,
573
+ "learning_rate": 1.8700249455414394e-05,
574
+ "loss": 1.2811,
575
+ "step": 440
576
+ },
577
+ {
578
+ "epoch": 0.21,
579
+ "learning_rate": 1.866025403784439e-05,
580
+ "loss": 1.2621,
581
+ "step": 445
582
+ },
583
+ {
584
+ "epoch": 0.22,
585
+ "learning_rate": 1.8619696668800494e-05,
586
+ "loss": 1.266,
587
+ "step": 450
588
+ },
589
+ {
590
+ "epoch": 0.22,
591
+ "learning_rate": 1.8578579979992266e-05,
592
+ "loss": 1.2579,
593
+ "step": 455
594
+ },
595
+ {
596
+ "epoch": 0.22,
597
+ "learning_rate": 1.8536906639422724e-05,
598
+ "loss": 1.2456,
599
+ "step": 460
600
+ },
601
+ {
602
+ "epoch": 0.22,
603
+ "learning_rate": 1.8494679351215212e-05,
604
+ "loss": 1.236,
605
+ "step": 465
606
+ },
607
+ {
608
+ "epoch": 0.23,
609
+ "learning_rate": 1.845190085543795e-05,
610
+ "loss": 1.2619,
611
+ "step": 470
612
+ },
613
+ {
614
+ "epoch": 0.23,
615
+ "learning_rate": 1.8408573927926225e-05,
616
+ "loss": 1.2551,
617
+ "step": 475
618
+ },
619
+ {
620
+ "epoch": 0.23,
621
+ "learning_rate": 1.8364701380102267e-05,
622
+ "loss": 1.2534,
623
+ "step": 480
624
+ },
625
+ {
626
+ "epoch": 0.23,
627
+ "learning_rate": 1.8320286058792845e-05,
628
+ "loss": 1.2637,
629
+ "step": 485
630
+ },
631
+ {
632
+ "epoch": 0.24,
633
+ "learning_rate": 1.82753308460445e-05,
634
+ "loss": 1.2571,
635
+ "step": 490
636
+ },
637
+ {
638
+ "epoch": 0.24,
639
+ "learning_rate": 1.8229838658936566e-05,
640
+ "loss": 1.2657,
641
+ "step": 495
642
+ },
643
+ {
644
+ "epoch": 0.24,
645
+ "learning_rate": 1.818381244939187e-05,
646
+ "loss": 1.2298,
647
+ "step": 500
648
+ },
649
+ {
650
+ "epoch": 0.24,
651
+ "eval_loss": 1.1995348930358887,
652
+ "eval_runtime": 424.3499,
653
+ "eval_samples_per_second": 38.096,
654
+ "eval_steps_per_second": 1.192,
655
+ "step": 500
656
+ },
657
+ {
658
+ "epoch": 0.24,
659
+ "learning_rate": 1.81372552039852e-05,
660
+ "loss": 1.2547,
661
+ "step": 505
662
+ },
663
+ {
664
+ "epoch": 0.25,
665
+ "learning_rate": 1.8090169943749477e-05,
666
+ "loss": 1.2452,
667
+ "step": 510
668
+ },
669
+ {
670
+ "epoch": 0.25,
671
+ "learning_rate": 1.804255972397977e-05,
672
+ "loss": 1.246,
673
+ "step": 515
674
+ },
675
+ {
676
+ "epoch": 0.25,
677
+ "learning_rate": 1.7994427634035016e-05,
678
+ "loss": 1.2402,
679
+ "step": 520
680
+ },
681
+ {
682
+ "epoch": 0.25,
683
+ "learning_rate": 1.7945776797137544e-05,
684
+ "loss": 1.2531,
685
+ "step": 525
686
+ },
687
+ {
688
+ "epoch": 0.26,
689
+ "learning_rate": 1.7896610370170452e-05,
690
+ "loss": 1.243,
691
+ "step": 530
692
+ },
693
+ {
694
+ "epoch": 0.26,
695
+ "learning_rate": 1.7846931543472722e-05,
696
+ "loss": 1.2344,
697
+ "step": 535
698
+ },
699
+ {
700
+ "epoch": 0.26,
701
+ "learning_rate": 1.7796743540632226e-05,
702
+ "loss": 1.2555,
703
+ "step": 540
704
+ },
705
+ {
706
+ "epoch": 0.26,
707
+ "learning_rate": 1.7746049618276545e-05,
708
+ "loss": 1.2283,
709
+ "step": 545
710
+ },
711
+ {
712
+ "epoch": 0.27,
713
+ "learning_rate": 1.769485306586166e-05,
714
+ "loss": 1.235,
715
+ "step": 550
716
+ },
717
+ {
718
+ "epoch": 0.27,
719
+ "learning_rate": 1.7643157205458483e-05,
720
+ "loss": 1.2255,
721
+ "step": 555
722
+ },
723
+ {
724
+ "epoch": 0.27,
725
+ "learning_rate": 1.7590965391537316e-05,
726
+ "loss": 1.2409,
727
+ "step": 560
728
+ },
729
+ {
730
+ "epoch": 0.27,
731
+ "learning_rate": 1.753828101075017e-05,
732
+ "loss": 1.2303,
733
+ "step": 565
734
+ },
735
+ {
736
+ "epoch": 0.28,
737
+ "learning_rate": 1.7485107481711014e-05,
738
+ "loss": 1.2293,
739
+ "step": 570
740
+ },
741
+ {
742
+ "epoch": 0.28,
743
+ "learning_rate": 1.7431448254773943e-05,
744
+ "loss": 1.2354,
745
+ "step": 575
746
+ },
747
+ {
748
+ "epoch": 0.28,
749
+ "learning_rate": 1.7377306811809306e-05,
750
+ "loss": 1.2277,
751
+ "step": 580
752
+ },
753
+ {
754
+ "epoch": 0.28,
755
+ "learning_rate": 1.7322686665977738e-05,
756
+ "loss": 1.2437,
757
+ "step": 585
758
+ },
759
+ {
760
+ "epoch": 0.28,
761
+ "learning_rate": 1.7267591361502233e-05,
762
+ "loss": 1.2332,
763
+ "step": 590
764
+ },
765
+ {
766
+ "epoch": 0.29,
767
+ "learning_rate": 1.7212024473438145e-05,
768
+ "loss": 1.2539,
769
+ "step": 595
770
+ },
771
+ {
772
+ "epoch": 0.29,
773
+ "learning_rate": 1.715598960744121e-05,
774
+ "loss": 1.2247,
775
+ "step": 600
776
+ },
777
+ {
778
+ "epoch": 0.29,
779
+ "eval_loss": 1.190222978591919,
780
+ "eval_runtime": 425.341,
781
+ "eval_samples_per_second": 38.007,
782
+ "eval_steps_per_second": 1.19,
783
+ "step": 600
784
+ },
785
+ {
786
+ "epoch": 0.29,
787
+ "learning_rate": 1.7099490399533583e-05,
788
+ "loss": 1.2454,
789
+ "step": 605
790
+ },
791
+ {
792
+ "epoch": 0.29,
793
+ "learning_rate": 1.7042530515867897e-05,
794
+ "loss": 1.2263,
795
+ "step": 610
796
+ },
797
+ {
798
+ "epoch": 0.3,
799
+ "learning_rate": 1.6985113652489374e-05,
800
+ "loss": 1.2203,
801
+ "step": 615
802
+ },
803
+ {
804
+ "epoch": 0.3,
805
+ "learning_rate": 1.6927243535095995e-05,
806
+ "loss": 1.2256,
807
+ "step": 620
808
+ },
809
+ {
810
+ "epoch": 0.3,
811
+ "learning_rate": 1.6868923918796753e-05,
812
+ "loss": 1.236,
813
+ "step": 625
814
+ },
815
+ {
816
+ "epoch": 0.3,
817
+ "learning_rate": 1.6810158587867973e-05,
818
+ "loss": 1.244,
819
+ "step": 630
820
+ },
821
+ {
822
+ "epoch": 0.31,
823
+ "learning_rate": 1.6750951355507763e-05,
824
+ "loss": 1.2408,
825
+ "step": 635
826
+ },
827
+ {
828
+ "epoch": 0.31,
829
+ "learning_rate": 1.6691306063588583e-05,
830
+ "loss": 1.216,
831
+ "step": 640
832
+ },
833
+ {
834
+ "epoch": 0.31,
835
+ "learning_rate": 1.6631226582407954e-05,
836
+ "loss": 1.2315,
837
+ "step": 645
838
+ },
839
+ {
840
+ "epoch": 0.31,
841
+ "learning_rate": 1.657071681043731e-05,
842
+ "loss": 1.2348,
843
+ "step": 650
844
+ },
845
+ {
846
+ "epoch": 0.32,
847
+ "learning_rate": 1.650978067406904e-05,
848
+ "loss": 1.2338,
849
+ "step": 655
850
+ },
851
+ {
852
+ "epoch": 0.32,
853
+ "learning_rate": 1.6448422127361707e-05,
854
+ "loss": 1.2434,
855
+ "step": 660
856
+ },
857
+ {
858
+ "epoch": 0.32,
859
+ "learning_rate": 1.638664515178348e-05,
860
+ "loss": 1.2237,
861
+ "step": 665
862
+ },
863
+ {
864
+ "epoch": 0.32,
865
+ "learning_rate": 1.6324453755953772e-05,
866
+ "loss": 1.2026,
867
+ "step": 670
868
+ },
869
+ {
870
+ "epoch": 0.33,
871
+ "learning_rate": 1.626185197538314e-05,
872
+ "loss": 1.2498,
873
+ "step": 675
874
+ },
875
+ {
876
+ "epoch": 0.33,
877
+ "learning_rate": 1.6198843872211404e-05,
878
+ "loss": 1.2291,
879
+ "step": 680
880
+ },
881
+ {
882
+ "epoch": 0.33,
883
+ "learning_rate": 1.613543353494409e-05,
884
+ "loss": 1.2269,
885
+ "step": 685
886
+ },
887
+ {
888
+ "epoch": 0.33,
889
+ "learning_rate": 1.6071625078187113e-05,
890
+ "loss": 1.2363,
891
+ "step": 690
892
+ },
893
+ {
894
+ "epoch": 0.34,
895
+ "learning_rate": 1.600742264237979e-05,
896
+ "loss": 1.207,
897
+ "step": 695
898
+ },
899
+ {
900
+ "epoch": 0.34,
901
+ "learning_rate": 1.5942830393526176e-05,
902
+ "loss": 1.2208,
903
+ "step": 700
904
+ },
905
+ {
906
+ "epoch": 0.34,
907
+ "eval_loss": 1.18331778049469,
908
+ "eval_runtime": 427.6678,
909
+ "eval_samples_per_second": 37.8,
910
+ "eval_steps_per_second": 1.183,
911
+ "step": 700
912
+ },
913
+ {
914
+ "epoch": 0.34,
915
+ "learning_rate": 1.5877852522924733e-05,
916
+ "loss": 1.2137,
917
+ "step": 705
918
+ },
919
+ {
920
+ "epoch": 0.34,
921
+ "learning_rate": 1.5812493246896368e-05,
922
+ "loss": 1.2171,
923
+ "step": 710
924
+ },
925
+ {
926
+ "epoch": 0.35,
927
+ "learning_rate": 1.574675680651084e-05,
928
+ "loss": 1.2311,
929
+ "step": 715
930
+ },
931
+ {
932
+ "epoch": 0.35,
933
+ "learning_rate": 1.568064746731156e-05,
934
+ "loss": 1.2106,
935
+ "step": 720
936
+ },
937
+ {
938
+ "epoch": 0.35,
939
+ "learning_rate": 1.561416951903881e-05,
940
+ "loss": 1.2061,
941
+ "step": 725
942
+ },
943
+ {
944
+ "epoch": 0.35,
945
+ "learning_rate": 1.554732727535139e-05,
946
+ "loss": 1.2039,
947
+ "step": 730
948
+ },
949
+ {
950
+ "epoch": 0.35,
951
+ "learning_rate": 1.5480125073546705e-05,
952
+ "loss": 1.1872,
953
+ "step": 735
954
+ },
955
+ {
956
+ "epoch": 0.36,
957
+ "learning_rate": 1.5412567274279316e-05,
958
+ "loss": 1.2143,
959
+ "step": 740
960
+ },
961
+ {
962
+ "epoch": 0.36,
963
+ "learning_rate": 1.5344658261278013e-05,
964
+ "loss": 1.21,
965
+ "step": 745
966
+ },
967
+ {
968
+ "epoch": 0.36,
969
+ "learning_rate": 1.527640244106133e-05,
970
+ "loss": 1.198,
971
+ "step": 750
972
+ },
973
+ {
974
+ "epoch": 0.36,
975
+ "learning_rate": 1.5207804242651625e-05,
976
+ "loss": 1.2096,
977
+ "step": 755
978
+ },
979
+ {
980
+ "epoch": 0.37,
981
+ "learning_rate": 1.5138868117287689e-05,
982
+ "loss": 1.2292,
983
+ "step": 760
984
+ },
985
+ {
986
+ "epoch": 0.37,
987
+ "learning_rate": 1.5069598538135905e-05,
988
+ "loss": 1.2208,
989
+ "step": 765
990
+ },
991
+ {
992
+ "epoch": 0.37,
993
+ "learning_rate": 1.5000000000000002e-05,
994
+ "loss": 1.2113,
995
+ "step": 770
996
+ },
997
+ {
998
+ "epoch": 0.37,
999
+ "learning_rate": 1.4930077019029376e-05,
1000
+ "loss": 1.2139,
1001
+ "step": 775
1002
+ },
1003
+ {
1004
+ "epoch": 0.38,
1005
+ "learning_rate": 1.485983413242606e-05,
1006
+ "loss": 1.2268,
1007
+ "step": 780
1008
+ },
1009
+ {
1010
+ "epoch": 0.38,
1011
+ "learning_rate": 1.4789275898150309e-05,
1012
+ "loss": 1.2414,
1013
+ "step": 785
1014
+ },
1015
+ {
1016
+ "epoch": 0.38,
1017
+ "learning_rate": 1.471840689462482e-05,
1018
+ "loss": 1.2141,
1019
+ "step": 790
1020
+ },
1021
+ {
1022
+ "epoch": 0.38,
1023
+ "learning_rate": 1.4647231720437687e-05,
1024
+ "loss": 1.1926,
1025
+ "step": 795
1026
+ },
1027
+ {
1028
+ "epoch": 0.39,
1029
+ "learning_rate": 1.4575754994043956e-05,
1030
+ "loss": 1.2375,
1031
+ "step": 800
1032
+ },
1033
+ {
1034
+ "epoch": 0.39,
1035
+ "eval_loss": 1.1774698495864868,
1036
+ "eval_runtime": 422.1872,
1037
+ "eval_samples_per_second": 38.291,
1038
+ "eval_steps_per_second": 1.199,
1039
+ "step": 800
1040
+ },
1041
+ {
1042
+ "epoch": 0.39,
1043
+ "learning_rate": 1.450398135346597e-05,
1044
+ "loss": 1.2201,
1045
+ "step": 805
1046
+ },
1047
+ {
1048
+ "epoch": 0.39,
1049
+ "learning_rate": 1.4431915455992416e-05,
1050
+ "loss": 1.2204,
1051
+ "step": 810
1052
+ },
1053
+ {
1054
+ "epoch": 0.39,
1055
+ "learning_rate": 1.4359561977876102e-05,
1056
+ "loss": 1.2133,
1057
+ "step": 815
1058
+ },
1059
+ {
1060
+ "epoch": 0.4,
1061
+ "learning_rate": 1.4286925614030542e-05,
1062
+ "loss": 1.2086,
1063
+ "step": 820
1064
+ },
1065
+ {
1066
+ "epoch": 0.4,
1067
+ "learning_rate": 1.4214011077725293e-05,
1068
+ "loss": 1.2039,
1069
+ "step": 825
1070
+ },
1071
+ {
1072
+ "epoch": 0.4,
1073
+ "learning_rate": 1.414082310028012e-05,
1074
+ "loss": 1.1965,
1075
+ "step": 830
1076
+ },
1077
+ {
1078
+ "epoch": 0.4,
1079
+ "learning_rate": 1.4067366430758004e-05,
1080
+ "loss": 1.2217,
1081
+ "step": 835
1082
+ },
1083
+ {
1084
+ "epoch": 0.41,
1085
+ "learning_rate": 1.3993645835656955e-05,
1086
+ "loss": 1.231,
1087
+ "step": 840
1088
+ },
1089
+ {
1090
+ "epoch": 0.41,
1091
+ "learning_rate": 1.3919666098600753e-05,
1092
+ "loss": 1.206,
1093
+ "step": 845
1094
+ },
1095
+ {
1096
+ "epoch": 0.41,
1097
+ "learning_rate": 1.3845432020028511e-05,
1098
+ "loss": 1.2025,
1099
+ "step": 850
1100
+ },
1101
+ {
1102
+ "epoch": 0.41,
1103
+ "learning_rate": 1.3770948416883205e-05,
1104
+ "loss": 1.2339,
1105
+ "step": 855
1106
+ },
1107
+ {
1108
+ "epoch": 0.42,
1109
+ "learning_rate": 1.369622012229911e-05,
1110
+ "loss": 1.2021,
1111
+ "step": 860
1112
+ },
1113
+ {
1114
+ "epoch": 0.42,
1115
+ "learning_rate": 1.362125198528817e-05,
1116
+ "loss": 1.2036,
1117
+ "step": 865
1118
+ },
1119
+ {
1120
+ "epoch": 0.42,
1121
+ "learning_rate": 1.3546048870425356e-05,
1122
+ "loss": 1.2242,
1123
+ "step": 870
1124
+ },
1125
+ {
1126
+ "epoch": 0.42,
1127
+ "learning_rate": 1.347061565753303e-05,
1128
+ "loss": 1.2259,
1129
+ "step": 875
1130
+ },
1131
+ {
1132
+ "epoch": 0.43,
1133
+ "learning_rate": 1.3394957241364273e-05,
1134
+ "loss": 1.1964,
1135
+ "step": 880
1136
+ },
1137
+ {
1138
+ "epoch": 0.43,
1139
+ "learning_rate": 1.3319078531285286e-05,
1140
+ "loss": 1.2042,
1141
+ "step": 885
1142
+ },
1143
+ {
1144
+ "epoch": 0.43,
1145
+ "learning_rate": 1.3242984450956829e-05,
1146
+ "loss": 1.2158,
1147
+ "step": 890
1148
+ },
1149
+ {
1150
+ "epoch": 0.43,
1151
+ "learning_rate": 1.3166679938014728e-05,
1152
+ "loss": 1.2052,
1153
+ "step": 895
1154
+ },
1155
+ {
1156
+ "epoch": 0.43,
1157
+ "learning_rate": 1.3090169943749475e-05,
1158
+ "loss": 1.2038,
1159
+ "step": 900
1160
+ },
1161
+ {
1162
+ "epoch": 0.43,
1163
+ "eval_loss": 1.1725637912750244,
1164
+ "eval_runtime": 421.5684,
1165
+ "eval_samples_per_second": 38.347,
1166
+ "eval_steps_per_second": 1.2,
1167
+ "step": 900
1168
+ },
1169
+ {
1170
+ "epoch": 0.44,
1171
+ "learning_rate": 1.301345943278496e-05,
1172
+ "loss": 1.2096,
1173
+ "step": 905
1174
+ },
1175
+ {
1176
+ "epoch": 0.44,
1177
+ "learning_rate": 1.293655338275631e-05,
1178
+ "loss": 1.2106,
1179
+ "step": 910
1180
+ },
1181
+ {
1182
+ "epoch": 0.44,
1183
+ "learning_rate": 1.2859456783986892e-05,
1184
+ "loss": 1.189,
1185
+ "step": 915
1186
+ },
1187
+ {
1188
+ "epoch": 0.44,
1189
+ "learning_rate": 1.2782174639164528e-05,
1190
+ "loss": 1.1913,
1191
+ "step": 920
1192
+ },
1193
+ {
1194
+ "epoch": 0.45,
1195
+ "learning_rate": 1.270471196301684e-05,
1196
+ "loss": 1.214,
1197
+ "step": 925
1198
+ },
1199
+ {
1200
+ "epoch": 0.45,
1201
+ "learning_rate": 1.262707378198587e-05,
1202
+ "loss": 1.2046,
1203
+ "step": 930
1204
+ },
1205
+ {
1206
+ "epoch": 0.45,
1207
+ "learning_rate": 1.2549265133901934e-05,
1208
+ "loss": 1.1957,
1209
+ "step": 935
1210
+ },
1211
+ {
1212
+ "epoch": 0.45,
1213
+ "learning_rate": 1.2471291067656696e-05,
1214
+ "loss": 1.1824,
1215
+ "step": 940
1216
+ },
1217
+ {
1218
+ "epoch": 0.46,
1219
+ "learning_rate": 1.2393156642875579e-05,
1220
+ "loss": 1.2013,
1221
+ "step": 945
1222
+ },
1223
+ {
1224
+ "epoch": 0.46,
1225
+ "learning_rate": 1.2314866929589434e-05,
1226
+ "loss": 1.209,
1227
+ "step": 950
1228
+ },
1229
+ {
1230
+ "epoch": 0.46,
1231
+ "learning_rate": 1.2236427007905558e-05,
1232
+ "loss": 1.1864,
1233
+ "step": 955
1234
+ },
1235
+ {
1236
+ "epoch": 0.46,
1237
+ "learning_rate": 1.2157841967678064e-05,
1238
+ "loss": 1.2149,
1239
+ "step": 960
1240
+ },
1241
+ {
1242
+ "epoch": 0.47,
1243
+ "learning_rate": 1.2079116908177592e-05,
1244
+ "loss": 1.1946,
1245
+ "step": 965
1246
+ },
1247
+ {
1248
+ "epoch": 0.47,
1249
+ "learning_rate": 1.2000256937760446e-05,
1250
+ "loss": 1.2138,
1251
+ "step": 970
1252
+ },
1253
+ {
1254
+ "epoch": 0.47,
1255
+ "learning_rate": 1.1921267173537085e-05,
1256
+ "loss": 1.2145,
1257
+ "step": 975
1258
+ },
1259
+ {
1260
+ "epoch": 0.47,
1261
+ "learning_rate": 1.1842152741040117e-05,
1262
+ "loss": 1.1983,
1263
+ "step": 980
1264
+ },
1265
+ {
1266
+ "epoch": 0.48,
1267
+ "learning_rate": 1.1762918773891691e-05,
1268
+ "loss": 1.1901,
1269
+ "step": 985
1270
+ },
1271
+ {
1272
+ "epoch": 0.48,
1273
+ "learning_rate": 1.1683570413470384e-05,
1274
+ "loss": 1.2152,
1275
+ "step": 990
1276
+ },
1277
+ {
1278
+ "epoch": 0.48,
1279
+ "learning_rate": 1.1604112808577603e-05,
1280
+ "loss": 1.2067,
1281
+ "step": 995
1282
+ },
1283
+ {
1284
+ "epoch": 0.48,
1285
+ "learning_rate": 1.1524551115103455e-05,
1286
+ "loss": 1.1926,
1287
+ "step": 1000
1288
+ },
1289
+ {
1290
+ "epoch": 0.48,
1291
+ "eval_loss": 1.168326735496521,
1292
+ "eval_runtime": 421.3368,
1293
+ "eval_samples_per_second": 38.368,
1294
+ "eval_steps_per_second": 1.201,
1295
+ "step": 1000
1296
+ },
1297
+ {
1298
+ "epoch": 0.49,
1299
+ "learning_rate": 1.1444890495692214e-05,
1300
+ "loss": 1.1972,
1301
+ "step": 1005
1302
+ },
1303
+ {
1304
+ "epoch": 0.49,
1305
+ "learning_rate": 1.1365136119407318e-05,
1306
+ "loss": 1.1905,
1307
+ "step": 1010
1308
+ },
1309
+ {
1310
+ "epoch": 0.49,
1311
+ "learning_rate": 1.1285293161395948e-05,
1312
+ "loss": 1.1882,
1313
+ "step": 1015
1314
+ },
1315
+ {
1316
+ "epoch": 0.49,
1317
+ "learning_rate": 1.1205366802553231e-05,
1318
+ "loss": 1.2066,
1319
+ "step": 1020
1320
+ },
1321
+ {
1322
+ "epoch": 0.5,
1323
+ "learning_rate": 1.1125362229186056e-05,
1324
+ "loss": 1.1901,
1325
+ "step": 1025
1326
+ },
1327
+ {
1328
+ "epoch": 0.5,
1329
+ "learning_rate": 1.1045284632676535e-05,
1330
+ "loss": 1.1869,
1331
+ "step": 1030
1332
+ },
1333
+ {
1334
+ "epoch": 0.5,
1335
+ "learning_rate": 1.0965139209145153e-05,
1336
+ "loss": 1.1932,
1337
+ "step": 1035
1338
+ },
1339
+ {
1340
+ "epoch": 0.5,
1341
+ "learning_rate": 1.0884931159113585e-05,
1342
+ "loss": 1.182,
1343
+ "step": 1040
1344
+ },
1345
+ {
1346
+ "epoch": 0.5,
1347
+ "learning_rate": 1.0804665687167262e-05,
1348
+ "loss": 1.214,
1349
+ "step": 1045
1350
+ },
1351
+ {
1352
+ "epoch": 0.51,
1353
+ "learning_rate": 1.0724348001617626e-05,
1354
+ "loss": 1.193,
1355
+ "step": 1050
1356
+ },
1357
+ {
1358
+ "epoch": 0.51,
1359
+ "learning_rate": 1.0643983314164195e-05,
1360
+ "loss": 1.207,
1361
+ "step": 1055
1362
+ },
1363
+ {
1364
+ "epoch": 0.51,
1365
+ "learning_rate": 1.0563576839556375e-05,
1366
+ "loss": 1.2182,
1367
+ "step": 1060
1368
+ },
1369
+ {
1370
+ "epoch": 0.51,
1371
+ "learning_rate": 1.0483133795255072e-05,
1372
+ "loss": 1.1954,
1373
+ "step": 1065
1374
+ },
1375
+ {
1376
+ "epoch": 0.52,
1377
+ "learning_rate": 1.0402659401094154e-05,
1378
+ "loss": 1.1991,
1379
+ "step": 1070
1380
+ },
1381
+ {
1382
+ "epoch": 0.52,
1383
+ "learning_rate": 1.0322158878941733e-05,
1384
+ "loss": 1.1939,
1385
+ "step": 1075
1386
+ },
1387
+ {
1388
+ "epoch": 0.52,
1389
+ "learning_rate": 1.0241637452361323e-05,
1390
+ "loss": 1.184,
1391
+ "step": 1080
1392
+ },
1393
+ {
1394
+ "epoch": 0.52,
1395
+ "learning_rate": 1.0161100346272913e-05,
1396
+ "loss": 1.2052,
1397
+ "step": 1085
1398
+ },
1399
+ {
1400
+ "epoch": 0.53,
1401
+ "learning_rate": 1.0080552786613899e-05,
1402
+ "loss": 1.2077,
1403
+ "step": 1090
1404
+ },
1405
+ {
1406
+ "epoch": 0.53,
1407
+ "learning_rate": 1e-05,
1408
+ "loss": 1.1848,
1409
+ "step": 1095
1410
+ },
1411
+ {
1412
+ "epoch": 0.53,
1413
+ "learning_rate": 9.919447213386103e-06,
1414
+ "loss": 1.1933,
1415
+ "step": 1100
1416
+ },
1417
+ {
1418
+ "epoch": 0.53,
1419
+ "eval_loss": 1.1648716926574707,
1420
+ "eval_runtime": 424.4832,
1421
+ "eval_samples_per_second": 38.084,
1422
+ "eval_steps_per_second": 1.192,
1423
+ "step": 1100
1424
+ },
1425
+ {
1426
+ "epoch": 0.53,
1427
+ "learning_rate": 9.838899653727088e-06,
1428
+ "loss": 1.1803,
1429
+ "step": 1105
1430
+ },
1431
+ {
1432
+ "epoch": 0.54,
1433
+ "learning_rate": 9.75836254763868e-06,
1434
+ "loss": 1.1981,
1435
+ "step": 1110
1436
+ },
1437
+ {
1438
+ "epoch": 0.54,
1439
+ "learning_rate": 9.677841121058274e-06,
1440
+ "loss": 1.199,
1441
+ "step": 1115
1442
+ },
1443
+ {
1444
+ "epoch": 0.54,
1445
+ "learning_rate": 9.597340598905851e-06,
1446
+ "loss": 1.215,
1447
+ "step": 1120
1448
+ },
1449
+ {
1450
+ "epoch": 0.54,
1451
+ "learning_rate": 9.516866204744932e-06,
1452
+ "loss": 1.1851,
1453
+ "step": 1125
1454
+ },
1455
+ {
1456
+ "epoch": 0.55,
1457
+ "learning_rate": 9.436423160443625e-06,
1458
+ "loss": 1.1746,
1459
+ "step": 1130
1460
+ },
1461
+ {
1462
+ "epoch": 0.55,
1463
+ "learning_rate": 9.356016685835807e-06,
1464
+ "loss": 1.1955,
1465
+ "step": 1135
1466
+ },
1467
+ {
1468
+ "epoch": 0.55,
1469
+ "learning_rate": 9.275651998382377e-06,
1470
+ "loss": 1.1971,
1471
+ "step": 1140
1472
+ },
1473
+ {
1474
+ "epoch": 0.55,
1475
+ "learning_rate": 9.195334312832742e-06,
1476
+ "loss": 1.1919,
1477
+ "step": 1145
1478
+ },
1479
+ {
1480
+ "epoch": 0.56,
1481
+ "learning_rate": 9.115068840886418e-06,
1482
+ "loss": 1.1744,
1483
+ "step": 1150
1484
+ },
1485
+ {
1486
+ "epoch": 0.56,
1487
+ "learning_rate": 9.034860790854848e-06,
1488
+ "loss": 1.1884,
1489
+ "step": 1155
1490
+ },
1491
+ {
1492
+ "epoch": 0.56,
1493
+ "learning_rate": 8.954715367323468e-06,
1494
+ "loss": 1.1796,
1495
+ "step": 1160
1496
+ },
1497
+ {
1498
+ "epoch": 0.56,
1499
+ "learning_rate": 8.874637770813947e-06,
1500
+ "loss": 1.191,
1501
+ "step": 1165
1502
+ },
1503
+ {
1504
+ "epoch": 0.57,
1505
+ "learning_rate": 8.79463319744677e-06,
1506
+ "loss": 1.196,
1507
+ "step": 1170
1508
+ },
1509
+ {
1510
+ "epoch": 0.57,
1511
+ "learning_rate": 8.714706838604056e-06,
1512
+ "loss": 1.2032,
1513
+ "step": 1175
1514
+ },
1515
+ {
1516
+ "epoch": 0.57,
1517
+ "learning_rate": 8.634863880592687e-06,
1518
+ "loss": 1.1897,
1519
+ "step": 1180
1520
+ },
1521
+ {
1522
+ "epoch": 0.57,
1523
+ "learning_rate": 8.55510950430779e-06,
1524
+ "loss": 1.1964,
1525
+ "step": 1185
1526
+ },
1527
+ {
1528
+ "epoch": 0.57,
1529
+ "learning_rate": 8.475448884896546e-06,
1530
+ "loss": 1.1858,
1531
+ "step": 1190
1532
+ },
1533
+ {
1534
+ "epoch": 0.58,
1535
+ "learning_rate": 8.395887191422397e-06,
1536
+ "loss": 1.1918,
1537
+ "step": 1195
1538
+ },
1539
+ {
1540
+ "epoch": 0.58,
1541
+ "learning_rate": 8.316429586529616e-06,
1542
+ "loss": 1.1893,
1543
+ "step": 1200
1544
+ },
1545
+ {
1546
+ "epoch": 0.58,
1547
+ "eval_loss": 1.1618335247039795,
1548
+ "eval_runtime": 423.2525,
1549
+ "eval_samples_per_second": 38.195,
1550
+ "eval_steps_per_second": 1.196,
1551
+ "step": 1200
1552
+ },
1553
+ {
1554
+ "epoch": 0.58,
1555
+ "learning_rate": 8.23708122610831e-06,
1556
+ "loss": 1.1907,
1557
+ "step": 1205
1558
+ },
1559
+ {
1560
+ "epoch": 0.58,
1561
+ "learning_rate": 8.157847258959885e-06,
1562
+ "loss": 1.2021,
1563
+ "step": 1210
1564
+ },
1565
+ {
1566
+ "epoch": 0.59,
1567
+ "learning_rate": 8.078732826462917e-06,
1568
+ "loss": 1.1999,
1569
+ "step": 1215
1570
+ },
1571
+ {
1572
+ "epoch": 0.59,
1573
+ "learning_rate": 7.999743062239557e-06,
1574
+ "loss": 1.1716,
1575
+ "step": 1220
1576
+ },
1577
+ {
1578
+ "epoch": 0.59,
1579
+ "learning_rate": 7.92088309182241e-06,
1580
+ "loss": 1.1864,
1581
+ "step": 1225
1582
+ },
1583
+ {
1584
+ "epoch": 0.59,
1585
+ "learning_rate": 7.84215803232194e-06,
1586
+ "loss": 1.1855,
1587
+ "step": 1230
1588
+ },
1589
+ {
1590
+ "epoch": 0.6,
1591
+ "learning_rate": 7.763572992094448e-06,
1592
+ "loss": 1.1899,
1593
+ "step": 1235
1594
+ },
1595
+ {
1596
+ "epoch": 0.6,
1597
+ "learning_rate": 7.685133070410571e-06,
1598
+ "loss": 1.1814,
1599
+ "step": 1240
1600
+ },
1601
+ {
1602
+ "epoch": 0.6,
1603
+ "learning_rate": 7.606843357124426e-06,
1604
+ "loss": 1.2001,
1605
+ "step": 1245
1606
+ },
1607
+ {
1608
+ "epoch": 0.6,
1609
+ "learning_rate": 7.5287089323433035e-06,
1610
+ "loss": 1.1886,
1611
+ "step": 1250
1612
+ },
1613
+ {
1614
+ "epoch": 0.61,
1615
+ "learning_rate": 7.450734866098066e-06,
1616
+ "loss": 1.2065,
1617
+ "step": 1255
1618
+ },
1619
+ {
1620
+ "epoch": 0.61,
1621
+ "learning_rate": 7.372926218014131e-06,
1622
+ "loss": 1.1812,
1623
+ "step": 1260
1624
+ },
1625
+ {
1626
+ "epoch": 0.61,
1627
+ "learning_rate": 7.2952880369831635e-06,
1628
+ "loss": 1.1729,
1629
+ "step": 1265
1630
+ },
1631
+ {
1632
+ "epoch": 0.61,
1633
+ "learning_rate": 7.217825360835475e-06,
1634
+ "loss": 1.1843,
1635
+ "step": 1270
1636
+ },
1637
+ {
1638
+ "epoch": 0.62,
1639
+ "learning_rate": 7.140543216013109e-06,
1640
+ "loss": 1.1864,
1641
+ "step": 1275
1642
+ },
1643
+ {
1644
+ "epoch": 0.62,
1645
+ "learning_rate": 7.063446617243695e-06,
1646
+ "loss": 1.1875,
1647
+ "step": 1280
1648
+ },
1649
+ {
1650
+ "epoch": 0.62,
1651
+ "learning_rate": 6.986540567215043e-06,
1652
+ "loss": 1.209,
1653
+ "step": 1285
1654
+ },
1655
+ {
1656
+ "epoch": 0.62,
1657
+ "learning_rate": 6.909830056250527e-06,
1658
+ "loss": 1.2043,
1659
+ "step": 1290
1660
+ },
1661
+ {
1662
+ "epoch": 0.63,
1663
+ "learning_rate": 6.833320061985278e-06,
1664
+ "loss": 1.1849,
1665
+ "step": 1295
1666
+ },
1667
+ {
1668
+ "epoch": 0.63,
1669
+ "learning_rate": 6.757015549043174e-06,
1670
+ "loss": 1.2029,
1671
+ "step": 1300
1672
+ },
1673
+ {
1674
+ "epoch": 0.63,
1675
+ "eval_loss": 1.1593303680419922,
1676
+ "eval_runtime": 425.0269,
1677
+ "eval_samples_per_second": 38.035,
1678
+ "eval_steps_per_second": 1.191,
1679
+ "step": 1300
1680
+ },
1681
+ {
1682
+ "epoch": 0.63,
1683
+ "learning_rate": 6.680921468714718e-06,
1684
+ "loss": 1.182,
1685
+ "step": 1305
1686
+ },
1687
+ {
1688
+ "epoch": 0.63,
1689
+ "learning_rate": 6.605042758635729e-06,
1690
+ "loss": 1.1861,
1691
+ "step": 1310
1692
+ },
1693
+ {
1694
+ "epoch": 0.64,
1695
+ "learning_rate": 6.529384342466971e-06,
1696
+ "loss": 1.1725,
1697
+ "step": 1315
1698
+ },
1699
+ {
1700
+ "epoch": 0.64,
1701
+ "learning_rate": 6.453951129574644e-06,
1702
+ "loss": 1.1873,
1703
+ "step": 1320
1704
+ },
1705
+ {
1706
+ "epoch": 0.64,
1707
+ "learning_rate": 6.378748014711834e-06,
1708
+ "loss": 1.1856,
1709
+ "step": 1325
1710
+ },
1711
+ {
1712
+ "epoch": 0.64,
1713
+ "learning_rate": 6.30377987770089e-06,
1714
+ "loss": 1.1836,
1715
+ "step": 1330
1716
+ },
1717
+ {
1718
+ "epoch": 0.64,
1719
+ "learning_rate": 6.229051583116796e-06,
1720
+ "loss": 1.1768,
1721
+ "step": 1335
1722
+ },
1723
+ {
1724
+ "epoch": 0.65,
1725
+ "learning_rate": 6.154567979971493e-06,
1726
+ "loss": 1.1871,
1727
+ "step": 1340
1728
+ },
1729
+ {
1730
+ "epoch": 0.65,
1731
+ "learning_rate": 6.080333901399252e-06,
1732
+ "loss": 1.1747,
1733
+ "step": 1345
1734
+ },
1735
+ {
1736
+ "epoch": 0.65,
1737
+ "learning_rate": 6.006354164343047e-06,
1738
+ "loss": 1.2114,
1739
+ "step": 1350
1740
+ },
1741
+ {
1742
+ "epoch": 0.65,
1743
+ "learning_rate": 5.932633569242e-06,
1744
+ "loss": 1.1872,
1745
+ "step": 1355
1746
+ },
1747
+ {
1748
+ "epoch": 0.66,
1749
+ "learning_rate": 5.859176899719883e-06,
1750
+ "loss": 1.1945,
1751
+ "step": 1360
1752
+ },
1753
+ {
1754
+ "epoch": 0.66,
1755
+ "learning_rate": 5.785988922274711e-06,
1756
+ "loss": 1.1785,
1757
+ "step": 1365
1758
+ },
1759
+ {
1760
+ "epoch": 0.66,
1761
+ "learning_rate": 5.713074385969457e-06,
1762
+ "loss": 1.2026,
1763
+ "step": 1370
1764
+ },
1765
+ {
1766
+ "epoch": 0.66,
1767
+ "learning_rate": 5.640438022123898e-06,
1768
+ "loss": 1.1928,
1769
+ "step": 1375
1770
+ },
1771
+ {
1772
+ "epoch": 0.67,
1773
+ "learning_rate": 5.5680845440075885e-06,
1774
+ "loss": 1.1775,
1775
+ "step": 1380
1776
+ },
1777
+ {
1778
+ "epoch": 0.67,
1779
+ "learning_rate": 5.496018646534032e-06,
1780
+ "loss": 1.1988,
1781
+ "step": 1385
1782
+ },
1783
+ {
1784
+ "epoch": 0.67,
1785
+ "learning_rate": 5.424245005956048e-06,
1786
+ "loss": 1.199,
1787
+ "step": 1390
1788
+ },
1789
+ {
1790
+ "epoch": 0.67,
1791
+ "learning_rate": 5.352768279562315e-06,
1792
+ "loss": 1.2145,
1793
+ "step": 1395
1794
+ },
1795
+ {
1796
+ "epoch": 0.68,
1797
+ "learning_rate": 5.28159310537518e-06,
1798
+ "loss": 1.2201,
1799
+ "step": 1400
1800
+ },
1801
+ {
1802
+ "epoch": 0.68,
1803
+ "eval_loss": 1.1572028398513794,
1804
+ "eval_runtime": 422.5597,
1805
+ "eval_samples_per_second": 38.257,
1806
+ "eval_steps_per_second": 1.197,
1807
+ "step": 1400
1808
+ },
1809
+ {
1810
+ "epoch": 0.68,
1811
+ "learning_rate": 5.210724101849696e-06,
1812
+ "loss": 1.2036,
1813
+ "step": 1405
1814
+ },
1815
+ {
1816
+ "epoch": 0.68,
1817
+ "learning_rate": 5.14016586757394e-06,
1818
+ "loss": 1.1714,
1819
+ "step": 1410
1820
+ },
1821
+ {
1822
+ "epoch": 0.68,
1823
+ "learning_rate": 5.069922980970626e-06,
1824
+ "loss": 1.164,
1825
+ "step": 1415
1826
+ },
1827
+ {
1828
+ "epoch": 0.69,
1829
+ "learning_rate": 5.000000000000003e-06,
1830
+ "loss": 1.1985,
1831
+ "step": 1420
1832
+ },
1833
+ {
1834
+ "epoch": 0.69,
1835
+ "learning_rate": 4.930401461864099e-06,
1836
+ "loss": 1.1966,
1837
+ "step": 1425
1838
+ },
1839
+ {
1840
+ "epoch": 0.69,
1841
+ "learning_rate": 4.861131882712314e-06,
1842
+ "loss": 1.1939,
1843
+ "step": 1430
1844
+ },
1845
+ {
1846
+ "epoch": 0.69,
1847
+ "learning_rate": 4.7921957573483756e-06,
1848
+ "loss": 1.2031,
1849
+ "step": 1435
1850
+ },
1851
+ {
1852
+ "epoch": 0.7,
1853
+ "learning_rate": 4.7235975589386715e-06,
1854
+ "loss": 1.1858,
1855
+ "step": 1440
1856
+ },
1857
+ {
1858
+ "epoch": 0.7,
1859
+ "learning_rate": 4.655341738721989e-06,
1860
+ "loss": 1.1909,
1861
+ "step": 1445
1862
+ },
1863
+ {
1864
+ "epoch": 0.7,
1865
+ "learning_rate": 4.587432725720687e-06,
1866
+ "loss": 1.1826,
1867
+ "step": 1450
1868
+ },
1869
+ {
1870
+ "epoch": 0.7,
1871
+ "learning_rate": 4.519874926453303e-06,
1872
+ "loss": 1.1905,
1873
+ "step": 1455
1874
+ },
1875
+ {
1876
+ "epoch": 0.71,
1877
+ "learning_rate": 4.4526727246486116e-06,
1878
+ "loss": 1.1671,
1879
+ "step": 1460
1880
+ },
1881
+ {
1882
+ "epoch": 0.71,
1883
+ "learning_rate": 4.385830480961192e-06,
1884
+ "loss": 1.196,
1885
+ "step": 1465
1886
+ },
1887
+ {
1888
+ "epoch": 0.71,
1889
+ "learning_rate": 4.319352532688444e-06,
1890
+ "loss": 1.1855,
1891
+ "step": 1470
1892
+ },
1893
+ {
1894
+ "epoch": 0.71,
1895
+ "learning_rate": 4.2532431934891646e-06,
1896
+ "loss": 1.1721,
1897
+ "step": 1475
1898
+ },
1899
+ {
1900
+ "epoch": 0.71,
1901
+ "learning_rate": 4.187506753103637e-06,
1902
+ "loss": 1.1905,
1903
+ "step": 1480
1904
+ },
1905
+ {
1906
+ "epoch": 0.72,
1907
+ "learning_rate": 4.12214747707527e-06,
1908
+ "loss": 1.1937,
1909
+ "step": 1485
1910
+ },
1911
+ {
1912
+ "epoch": 0.72,
1913
+ "learning_rate": 4.057169606473828e-06,
1914
+ "loss": 1.1809,
1915
+ "step": 1490
1916
+ },
1917
+ {
1918
+ "epoch": 0.72,
1919
+ "learning_rate": 3.99257735762021e-06,
1920
+ "loss": 1.1805,
1921
+ "step": 1495
1922
+ },
1923
+ {
1924
+ "epoch": 0.72,
1925
+ "learning_rate": 3.9283749218128885e-06,
1926
+ "loss": 1.1741,
1927
+ "step": 1500
1928
+ },
1929
+ {
1930
+ "epoch": 0.72,
1931
+ "eval_loss": 1.155676007270813,
1932
+ "eval_runtime": 424.7643,
1933
+ "eval_samples_per_second": 38.059,
1934
+ "eval_steps_per_second": 1.191,
1935
+ "step": 1500
1936
+ },
1937
+ {
1938
+ "epoch": 0.73,
1939
+ "learning_rate": 3.864566465055913e-06,
1940
+ "loss": 1.178,
1941
+ "step": 1505
1942
+ },
1943
+ {
1944
+ "epoch": 0.73,
1945
+ "learning_rate": 3.8011561277885965e-06,
1946
+ "loss": 1.1738,
1947
+ "step": 1510
1948
+ },
1949
+ {
1950
+ "epoch": 0.73,
1951
+ "learning_rate": 3.738148024616863e-06,
1952
+ "loss": 1.2035,
1953
+ "step": 1515
1954
+ },
1955
+ {
1956
+ "epoch": 0.73,
1957
+ "learning_rate": 3.6755462440462288e-06,
1958
+ "loss": 1.1699,
1959
+ "step": 1520
1960
+ },
1961
+ {
1962
+ "epoch": 0.74,
1963
+ "learning_rate": 3.6133548482165225e-06,
1964
+ "loss": 1.1839,
1965
+ "step": 1525
1966
+ },
1967
+ {
1968
+ "epoch": 0.74,
1969
+ "learning_rate": 3.5515778726382967e-06,
1970
+ "loss": 1.1988,
1971
+ "step": 1530
1972
+ },
1973
+ {
1974
+ "epoch": 0.74,
1975
+ "learning_rate": 3.4902193259309627e-06,
1976
+ "loss": 1.1747,
1977
+ "step": 1535
1978
+ },
1979
+ {
1980
+ "epoch": 0.74,
1981
+ "learning_rate": 3.4292831895626944e-06,
1982
+ "loss": 1.1824,
1983
+ "step": 1540
1984
+ },
1985
+ {
1986
+ "epoch": 0.75,
1987
+ "learning_rate": 3.3687734175920505e-06,
1988
+ "loss": 1.1772,
1989
+ "step": 1545
1990
+ },
1991
+ {
1992
+ "epoch": 0.75,
1993
+ "learning_rate": 3.308693936411421e-06,
1994
+ "loss": 1.1655,
1995
+ "step": 1550
1996
+ },
1997
+ {
1998
+ "epoch": 0.75,
1999
+ "learning_rate": 3.2490486444922396e-06,
2000
+ "loss": 1.1734,
2001
+ "step": 1555
2002
+ },
2003
+ {
2004
+ "epoch": 0.75,
2005
+ "learning_rate": 3.1898414121320277e-06,
2006
+ "loss": 1.1759,
2007
+ "step": 1560
2008
+ },
2009
+ {
2010
+ "epoch": 0.76,
2011
+ "learning_rate": 3.131076081203247e-06,
2012
+ "loss": 1.1901,
2013
+ "step": 1565
2014
+ },
2015
+ {
2016
+ "epoch": 0.76,
2017
+ "learning_rate": 3.0727564649040066e-06,
2018
+ "loss": 1.174,
2019
+ "step": 1570
2020
+ },
2021
+ {
2022
+ "epoch": 0.76,
2023
+ "learning_rate": 3.0148863475106315e-06,
2024
+ "loss": 1.1773,
2025
+ "step": 1575
2026
+ },
2027
+ {
2028
+ "epoch": 0.76,
2029
+ "learning_rate": 2.9574694841321082e-06,
2030
+ "loss": 1.1741,
2031
+ "step": 1580
2032
+ },
2033
+ {
2034
+ "epoch": 0.77,
2035
+ "learning_rate": 2.900509600466418e-06,
2036
+ "loss": 1.179,
2037
+ "step": 1585
2038
+ },
2039
+ {
2040
+ "epoch": 0.77,
2041
+ "learning_rate": 2.8440103925587904e-06,
2042
+ "loss": 1.1896,
2043
+ "step": 1590
2044
+ },
2045
+ {
2046
+ "epoch": 0.77,
2047
+ "learning_rate": 2.7879755265618558e-06,
2048
+ "loss": 1.1705,
2049
+ "step": 1595
2050
+ },
2051
+ {
2052
+ "epoch": 0.77,
2053
+ "learning_rate": 2.73240863849777e-06,
2054
+ "loss": 1.1813,
2055
+ "step": 1600
2056
+ },
2057
+ {
2058
+ "epoch": 0.77,
2059
+ "eval_loss": 1.1545099020004272,
2060
+ "eval_runtime": 425.9638,
2061
+ "eval_samples_per_second": 37.952,
2062
+ "eval_steps_per_second": 1.188,
2063
+ "step": 1600
2064
+ },
2065
+ {
2066
+ "epoch": 0.78,
2067
+ "learning_rate": 2.6773133340222677e-06,
2068
+ "loss": 1.1822,
2069
+ "step": 1605
2070
+ },
2071
+ {
2072
+ "epoch": 0.78,
2073
+ "learning_rate": 2.622693188190699e-06,
2074
+ "loss": 1.1801,
2075
+ "step": 1610
2076
+ },
2077
+ {
2078
+ "epoch": 0.78,
2079
+ "learning_rate": 2.5685517452260566e-06,
2080
+ "loss": 1.1689,
2081
+ "step": 1615
2082
+ },
2083
+ {
2084
+ "epoch": 0.78,
2085
+ "learning_rate": 2.514892518288988e-06,
2086
+ "loss": 1.1649,
2087
+ "step": 1620
2088
+ },
2089
+ {
2090
+ "epoch": 0.78,
2091
+ "learning_rate": 2.4617189892498326e-06,
2092
+ "loss": 1.1727,
2093
+ "step": 1625
2094
+ },
2095
+ {
2096
+ "epoch": 0.79,
2097
+ "learning_rate": 2.4090346084626857e-06,
2098
+ "loss": 1.1716,
2099
+ "step": 1630
2100
+ },
2101
+ {
2102
+ "epoch": 0.79,
2103
+ "learning_rate": 2.3568427945415163e-06,
2104
+ "loss": 1.1942,
2105
+ "step": 1635
2106
+ },
2107
+ {
2108
+ "epoch": 0.79,
2109
+ "learning_rate": 2.3051469341383403e-06,
2110
+ "loss": 1.1729,
2111
+ "step": 1640
2112
+ },
2113
+ {
2114
+ "epoch": 0.79,
2115
+ "learning_rate": 2.2539503817234553e-06,
2116
+ "loss": 1.1856,
2117
+ "step": 1645
2118
+ },
2119
+ {
2120
+ "epoch": 0.8,
2121
+ "learning_rate": 2.2032564593677773e-06,
2122
+ "loss": 1.1631,
2123
+ "step": 1650
2124
+ },
2125
+ {
2126
+ "epoch": 0.8,
2127
+ "learning_rate": 2.153068456527283e-06,
2128
+ "loss": 1.1741,
2129
+ "step": 1655
2130
+ },
2131
+ {
2132
+ "epoch": 0.8,
2133
+ "learning_rate": 2.103389629829551e-06,
2134
+ "loss": 1.1656,
2135
+ "step": 1660
2136
+ },
2137
+ {
2138
+ "epoch": 0.8,
2139
+ "learning_rate": 2.0542232028624585e-06,
2140
+ "loss": 1.1743,
2141
+ "step": 1665
2142
+ },
2143
+ {
2144
+ "epoch": 0.81,
2145
+ "learning_rate": 2.0055723659649907e-06,
2146
+ "loss": 1.1863,
2147
+ "step": 1670
2148
+ },
2149
+ {
2150
+ "epoch": 0.81,
2151
+ "learning_rate": 1.9574402760202315e-06,
2152
+ "loss": 1.1892,
2153
+ "step": 1675
2154
+ },
2155
+ {
2156
+ "epoch": 0.81,
2157
+ "learning_rate": 1.9098300562505266e-06,
2158
+ "loss": 1.1999,
2159
+ "step": 1680
2160
+ },
2161
+ {
2162
+ "epoch": 0.81,
2163
+ "learning_rate": 1.8627447960148036e-06,
2164
+ "loss": 1.173,
2165
+ "step": 1685
2166
+ },
2167
+ {
2168
+ "epoch": 0.82,
2169
+ "learning_rate": 1.8161875506081294e-06,
2170
+ "loss": 1.1957,
2171
+ "step": 1690
2172
+ },
2173
+ {
2174
+ "epoch": 0.82,
2175
+ "learning_rate": 1.7701613410634367e-06,
2176
+ "loss": 1.178,
2177
+ "step": 1695
2178
+ },
2179
+ {
2180
+ "epoch": 0.82,
2181
+ "learning_rate": 1.7246691539555027e-06,
2182
+ "loss": 1.1668,
2183
+ "step": 1700
2184
+ },
2185
+ {
2186
+ "epoch": 0.82,
2187
+ "eval_loss": 1.153558611869812,
2188
+ "eval_runtime": 426.9817,
2189
+ "eval_samples_per_second": 37.861,
2190
+ "eval_steps_per_second": 1.185,
2191
+ "step": 1700
2192
+ },
2193
+ {
2194
+ "epoch": 0.82,
2195
+ "learning_rate": 1.6797139412071583e-06,
2196
+ "loss": 1.1847,
2197
+ "step": 1705
2198
+ },
2199
+ {
2200
+ "epoch": 0.83,
2201
+ "learning_rate": 1.6352986198977327e-06,
2202
+ "loss": 1.1803,
2203
+ "step": 1710
2204
+ },
2205
+ {
2206
+ "epoch": 0.83,
2207
+ "learning_rate": 1.5914260720737796e-06,
2208
+ "loss": 1.1755,
2209
+ "step": 1715
2210
+ },
2211
+ {
2212
+ "epoch": 0.83,
2213
+ "learning_rate": 1.5480991445620541e-06,
2214
+ "loss": 1.1839,
2215
+ "step": 1720
2216
+ },
2217
+ {
2218
+ "epoch": 0.83,
2219
+ "learning_rate": 1.5053206487847916e-06,
2220
+ "loss": 1.1679,
2221
+ "step": 1725
2222
+ },
2223
+ {
2224
+ "epoch": 0.84,
2225
+ "learning_rate": 1.4630933605772801e-06,
2226
+ "loss": 1.1912,
2227
+ "step": 1730
2228
+ },
2229
+ {
2230
+ "epoch": 0.84,
2231
+ "learning_rate": 1.4214200200077343e-06,
2232
+ "loss": 1.172,
2233
+ "step": 1735
2234
+ },
2235
+ {
2236
+ "epoch": 0.84,
2237
+ "learning_rate": 1.3803033311995072e-06,
2238
+ "loss": 1.193,
2239
+ "step": 1740
2240
+ },
2241
+ {
2242
+ "epoch": 0.84,
2243
+ "learning_rate": 1.339745962155613e-06,
2244
+ "loss": 1.1819,
2245
+ "step": 1745
2246
+ },
2247
+ {
2248
+ "epoch": 0.85,
2249
+ "learning_rate": 1.2997505445856085e-06,
2250
+ "loss": 1.1911,
2251
+ "step": 1750
2252
+ },
2253
+ {
2254
+ "epoch": 0.85,
2255
+ "learning_rate": 1.2603196737348211e-06,
2256
+ "loss": 1.1804,
2257
+ "step": 1755
2258
+ },
2259
+ {
2260
+ "epoch": 0.85,
2261
+ "learning_rate": 1.2214559082159538e-06,
2262
+ "loss": 1.1797,
2263
+ "step": 1760
2264
+ },
2265
+ {
2266
+ "epoch": 0.85,
2267
+ "learning_rate": 1.1831617698430609e-06,
2268
+ "loss": 1.1686,
2269
+ "step": 1765
2270
+ },
2271
+ {
2272
+ "epoch": 0.85,
2273
+ "learning_rate": 1.1454397434679022e-06,
2274
+ "loss": 1.1825,
2275
+ "step": 1770
2276
+ },
2277
+ {
2278
+ "epoch": 0.86,
2279
+ "learning_rate": 1.1082922768187098e-06,
2280
+ "loss": 1.1881,
2281
+ "step": 1775
2282
+ },
2283
+ {
2284
+ "epoch": 0.86,
2285
+ "learning_rate": 1.0717217803413605e-06,
2286
+ "loss": 1.1746,
2287
+ "step": 1780
2288
+ },
2289
+ {
2290
+ "epoch": 0.86,
2291
+ "learning_rate": 1.0357306270429623e-06,
2292
+ "loss": 1.1833,
2293
+ "step": 1785
2294
+ },
2295
+ {
2296
+ "epoch": 0.86,
2297
+ "learning_rate": 1.0003211523378798e-06,
2298
+ "loss": 1.1932,
2299
+ "step": 1790
2300
+ },
2301
+ {
2302
+ "epoch": 0.87,
2303
+ "learning_rate": 9.65495653896179e-07,
2304
+ "loss": 1.1858,
2305
+ "step": 1795
2306
+ },
2307
+ {
2308
+ "epoch": 0.87,
2309
+ "learning_rate": 9.312563914945461e-07,
2310
+ "loss": 1.1495,
2311
+ "step": 1800
2312
+ },
2313
+ {
2314
+ "epoch": 0.87,
2315
+ "eval_loss": 1.1530314683914185,
2316
+ "eval_runtime": 426.2825,
2317
+ "eval_samples_per_second": 37.923,
2318
+ "eval_steps_per_second": 1.187,
2319
+ "step": 1800
2320
+ },
2321
+ {
2322
+ "epoch": 0.87,
2323
+ "learning_rate": 8.976055868696543e-07,
2324
+ "loss": 1.1573,
2325
+ "step": 1805
2326
+ },
2327
+ {
2328
+ "epoch": 0.87,
2329
+ "learning_rate": 8.645454235739903e-07,
2330
+ "loss": 1.1824,
2331
+ "step": 1810
2332
+ },
2333
+ {
2334
+ "epoch": 0.88,
2335
+ "learning_rate": 8.320780468341761e-07,
2336
+ "loss": 1.1805,
2337
+ "step": 1815
2338
+ },
2339
+ {
2340
+ "epoch": 0.88,
2341
+ "learning_rate": 8.002055634117578e-07,
2342
+ "loss": 1.1705,
2343
+ "step": 1820
2344
+ },
2345
+ {
2346
+ "epoch": 0.88,
2347
+ "learning_rate": 7.689300414665124e-07,
2348
+ "loss": 1.1755,
2349
+ "step": 1825
2350
+ },
2351
+ {
2352
+ "epoch": 0.88,
2353
+ "learning_rate": 7.382535104222366e-07,
2354
+ "loss": 1.1529,
2355
+ "step": 1830
2356
+ },
2357
+ {
2358
+ "epoch": 0.89,
2359
+ "learning_rate": 7.08177960835068e-07,
2360
+ "loss": 1.1716,
2361
+ "step": 1835
2362
+ },
2363
+ {
2364
+ "epoch": 0.89,
2365
+ "learning_rate": 6.787053442643233e-07,
2366
+ "loss": 1.1828,
2367
+ "step": 1840
2368
+ },
2369
+ {
2370
+ "epoch": 0.89,
2371
+ "learning_rate": 6.498375731458529e-07,
2372
+ "loss": 1.1944,
2373
+ "step": 1845
2374
+ },
2375
+ {
2376
+ "epoch": 0.89,
2377
+ "learning_rate": 6.215765206679569e-07,
2378
+ "loss": 1.1898,
2379
+ "step": 1850
2380
+ },
2381
+ {
2382
+ "epoch": 0.9,
2383
+ "learning_rate": 5.939240206498287e-07,
2384
+ "loss": 1.169,
2385
+ "step": 1855
2386
+ },
2387
+ {
2388
+ "epoch": 0.9,
2389
+ "learning_rate": 5.668818674225684e-07,
2390
+ "loss": 1.1748,
2391
+ "step": 1860
2392
+ },
2393
+ {
2394
+ "epoch": 0.9,
2395
+ "learning_rate": 5.404518157127481e-07,
2396
+ "loss": 1.1664,
2397
+ "step": 1865
2398
+ },
2399
+ {
2400
+ "epoch": 0.9,
2401
+ "learning_rate": 5.146355805285452e-07,
2402
+ "loss": 1.1663,
2403
+ "step": 1870
2404
+ },
2405
+ {
2406
+ "epoch": 0.91,
2407
+ "learning_rate": 4.894348370484648e-07,
2408
+ "loss": 1.1845,
2409
+ "step": 1875
2410
+ },
2411
+ {
2412
+ "epoch": 0.91,
2413
+ "learning_rate": 4.6485122051263764e-07,
2414
+ "loss": 1.168,
2415
+ "step": 1880
2416
+ },
2417
+ {
2418
+ "epoch": 0.91,
2419
+ "learning_rate": 4.408863261167096e-07,
2420
+ "loss": 1.1911,
2421
+ "step": 1885
2422
+ },
2423
+ {
2424
+ "epoch": 0.91,
2425
+ "learning_rate": 4.1754170890833777e-07,
2426
+ "loss": 1.1901,
2427
+ "step": 1890
2428
+ },
2429
+ {
2430
+ "epoch": 0.92,
2431
+ "learning_rate": 3.9481888368627764e-07,
2432
+ "loss": 1.1845,
2433
+ "step": 1895
2434
+ },
2435
+ {
2436
+ "epoch": 0.92,
2437
+ "learning_rate": 3.7271932490209327e-07,
2438
+ "loss": 1.1595,
2439
+ "step": 1900
2440
+ },
2441
+ {
2442
+ "epoch": 0.92,
2443
+ "eval_loss": 1.1527146100997925,
2444
+ "eval_runtime": 427.0976,
2445
+ "eval_samples_per_second": 37.851,
2446
+ "eval_steps_per_second": 1.185,
2447
+ "step": 1900
2448
+ },
2449
+ {
2450
+ "epoch": 0.92,
2451
+ "learning_rate": 3.5124446656448654e-07,
2452
+ "loss": 1.1582,
2453
+ "step": 1905
2454
+ },
2455
+ {
2456
+ "epoch": 0.92,
2457
+ "learning_rate": 3.303957021462378e-07,
2458
+ "loss": 1.1688,
2459
+ "step": 1910
2460
+ },
2461
+ {
2462
+ "epoch": 0.92,
2463
+ "learning_rate": 3.101743844937943e-07,
2464
+ "loss": 1.1785,
2465
+ "step": 1915
2466
+ },
2467
+ {
2468
+ "epoch": 0.93,
2469
+ "learning_rate": 2.905818257394799e-07,
2470
+ "loss": 1.182,
2471
+ "step": 1920
2472
+ },
2473
+ {
2474
+ "epoch": 0.93,
2475
+ "learning_rate": 2.716192972163556e-07,
2476
+ "loss": 1.1625,
2477
+ "step": 1925
2478
+ },
2479
+ {
2480
+ "epoch": 0.93,
2481
+ "learning_rate": 2.532880293757223e-07,
2482
+ "loss": 1.1795,
2483
+ "step": 1930
2484
+ },
2485
+ {
2486
+ "epoch": 0.93,
2487
+ "learning_rate": 2.355892117072789e-07,
2488
+ "loss": 1.1623,
2489
+ "step": 1935
2490
+ },
2491
+ {
2492
+ "epoch": 0.94,
2493
+ "learning_rate": 2.1852399266194312e-07,
2494
+ "loss": 1.1802,
2495
+ "step": 1940
2496
+ },
2497
+ {
2498
+ "epoch": 0.94,
2499
+ "learning_rate": 2.0209347957732328e-07,
2500
+ "loss": 1.1782,
2501
+ "step": 1945
2502
+ },
2503
+ {
2504
+ "epoch": 0.94,
2505
+ "learning_rate": 1.8629873860586567e-07,
2506
+ "loss": 1.153,
2507
+ "step": 1950
2508
+ },
2509
+ {
2510
+ "epoch": 0.94,
2511
+ "learning_rate": 1.711407946456789e-07,
2512
+ "loss": 1.1797,
2513
+ "step": 1955
2514
+ },
2515
+ {
2516
+ "epoch": 0.95,
2517
+ "learning_rate": 1.5662063127402262e-07,
2518
+ "loss": 1.1657,
2519
+ "step": 1960
2520
+ },
2521
+ {
2522
+ "epoch": 0.95,
2523
+ "learning_rate": 1.4273919068349184e-07,
2524
+ "loss": 1.1736,
2525
+ "step": 1965
2526
+ },
2527
+ {
2528
+ "epoch": 0.95,
2529
+ "learning_rate": 1.2949737362087156e-07,
2530
+ "loss": 1.1771,
2531
+ "step": 1970
2532
+ },
2533
+ {
2534
+ "epoch": 0.95,
2535
+ "learning_rate": 1.1689603932869664e-07,
2536
+ "loss": 1.1638,
2537
+ "step": 1975
2538
+ },
2539
+ {
2540
+ "epoch": 0.96,
2541
+ "learning_rate": 1.0493600548948879e-07,
2542
+ "loss": 1.1764,
2543
+ "step": 1980
2544
+ },
2545
+ {
2546
+ "epoch": 0.96,
2547
+ "learning_rate": 9.36180481727067e-08,
2548
+ "loss": 1.1829,
2549
+ "step": 1985
2550
+ },
2551
+ {
2552
+ "epoch": 0.96,
2553
+ "learning_rate": 8.29429017843797e-08,
2554
+ "loss": 1.1888,
2555
+ "step": 1990
2556
+ },
2557
+ {
2558
+ "epoch": 0.96,
2559
+ "learning_rate": 7.291125901946027e-08,
2560
+ "loss": 1.1743,
2561
+ "step": 1995
2562
+ },
2563
+ {
2564
+ "epoch": 0.97,
2565
+ "learning_rate": 6.352377081687011e-08,
2566
+ "loss": 1.1607,
2567
+ "step": 2000
2568
+ },
2569
+ {
2570
+ "epoch": 0.97,
2571
+ "eval_loss": 1.1526199579238892,
2572
+ "eval_runtime": 426.4931,
2573
+ "eval_samples_per_second": 37.904,
2574
+ "eval_steps_per_second": 1.186,
2575
+ "step": 2000
2576
+ },
2577
+ {
2578
+ "epoch": 0.97,
2579
+ "learning_rate": 5.4781046317267103e-08,
2580
+ "loss": 1.1562,
2581
+ "step": 2005
2582
+ },
2583
+ {
2584
+ "epoch": 0.97,
2585
+ "learning_rate": 4.6683652823513725e-08,
2586
+ "loss": 1.1882,
2587
+ "step": 2010
2588
+ },
2589
+ {
2590
+ "epoch": 0.97,
2591
+ "learning_rate": 3.923211576387087e-08,
2592
+ "loss": 1.178,
2593
+ "step": 2015
2594
+ },
2595
+ {
2596
+ "epoch": 0.98,
2597
+ "learning_rate": 3.242691865790071e-08,
2598
+ "loss": 1.165,
2599
+ "step": 2020
2600
+ },
2601
+ {
2602
+ "epoch": 0.98,
2603
+ "learning_rate": 2.6268503085089547e-08,
2604
+ "loss": 1.1853,
2605
+ "step": 2025
2606
+ },
2607
+ {
2608
+ "epoch": 0.98,
2609
+ "learning_rate": 2.0757268656198536e-08,
2610
+ "loss": 1.1643,
2611
+ "step": 2030
2612
+ },
2613
+ {
2614
+ "epoch": 0.98,
2615
+ "learning_rate": 1.5893572987333293e-08,
2616
+ "loss": 1.1776,
2617
+ "step": 2035
2618
+ },
2619
+ {
2620
+ "epoch": 0.99,
2621
+ "learning_rate": 1.1677731676733584e-08,
2622
+ "loss": 1.1739,
2623
+ "step": 2040
2624
+ },
2625
+ {
2626
+ "epoch": 0.99,
2627
+ "learning_rate": 8.110018284304132e-09,
2628
+ "loss": 1.1549,
2629
+ "step": 2045
2630
+ },
2631
+ {
2632
+ "epoch": 0.99,
2633
+ "learning_rate": 5.190664313851068e-09,
2634
+ "loss": 1.1693,
2635
+ "step": 2050
2636
+ },
2637
+ {
2638
+ "epoch": 0.99,
2639
+ "learning_rate": 2.9198591980705847e-09,
2640
+ "loss": 1.1632,
2641
+ "step": 2055
2642
+ },
2643
+ {
2644
+ "epoch": 0.99,
2645
+ "learning_rate": 1.2977502862532298e-09,
2646
+ "loss": 1.1761,
2647
+ "step": 2060
2648
+ },
2649
+ {
2650
+ "epoch": 1.0,
2651
+ "learning_rate": 3.244428347204398e-10,
2652
+ "loss": 1.1803,
2653
+ "step": 2065
2654
+ },
2655
+ {
2656
+ "epoch": 1.0,
2657
+ "learning_rate": 0.0,
2658
+ "loss": 1.1949,
2659
+ "step": 2070
2660
+ },
2661
+ {
2662
+ "epoch": 1.0,
2663
+ "step": 2070,
2664
+ "total_flos": 2.0719233559829676e+19,
2665
+ "train_loss": 1.2525324755820675,
2666
+ "train_runtime": 32325.2724,
2667
+ "train_samples_per_second": 8.198,
2668
+ "train_steps_per_second": 0.064
2669
+ }
2670
+ ],
2671
+ "logging_steps": 5,
2672
+ "max_steps": 2070,
2673
+ "num_input_tokens_seen": 0,
2674
+ "num_train_epochs": 1,
2675
+ "save_steps": 100,
2676
+ "total_flos": 2.0719233559829676e+19,
2677
+ "train_batch_size": 16,
2678
+ "trial_name": null,
2679
+ "trial_params": null
2680
+ }