--- base_model: ondevicellm/tinyllama_moe_v2 tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - HuggingFaceH4/ultrachat_200k model-index: - name: tinyllama_moe_sft_routeraux_ep3 results: [] --- # tinyllama_moe_sft_routeraux_ep3 This model is a fine-tuned version of [ondevicellm/tinyllama_moe_v2](https://huggingface.co./ondevicellm/tinyllama_moe_v2) on the HuggingFaceH4/ultrachat_200k dataset. It achieves the following results on the evaluation set: - Loss: 1.2954 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 120 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.72 | 0.09 | 100 | 1.6775 | | 1.4985 | 0.18 | 200 | 1.4900 | | 1.4482 | 0.26 | 300 | 1.4473 | | 1.4152 | 0.35 | 400 | 1.4215 | | 1.3777 | 0.44 | 500 | 1.4031 | | 1.3932 | 0.53 | 600 | 1.3886 | | 1.375 | 0.61 | 700 | 1.3762 | | 1.3574 | 0.7 | 800 | 1.3657 | | 1.349 | 0.79 | 900 | 1.3563 | | 1.3276 | 0.88 | 1000 | 1.3481 | | 1.3491 | 0.96 | 1100 | 1.3409 | | 1.2812 | 1.05 | 1200 | 1.3358 | | 1.2831 | 1.14 | 1300 | 1.3308 | | 1.2917 | 1.23 | 1400 | 1.3258 | | 1.2812 | 1.31 | 1500 | 1.3219 | | 1.2819 | 1.4 | 1600 | 1.3178 | | 1.2756 | 1.49 | 1700 | 1.3145 | | 1.2584 | 1.58 | 1800 | 1.3107 | | 1.2806 | 1.66 | 1900 | 1.3083 | | 1.2815 | 1.75 | 2000 | 1.3054 | | 1.2676 | 1.84 | 2100 | 1.3031 | | 1.2388 | 1.93 | 2200 | 1.3011 | | 1.2385 | 2.01 | 2300 | 1.3015 | | 1.2459 | 2.1 | 2400 | 1.3000 | | 1.2349 | 2.19 | 2500 | 1.2989 | | 1.2277 | 2.28 | 2600 | 1.2981 | | 1.2243 | 2.37 | 2700 | 1.2973 | | 1.2298 | 2.45 | 2800 | 1.2967 | | 1.2362 | 2.54 | 2900 | 1.2961 | | 1.216 | 2.63 | 3000 | 1.2958 | | 1.2381 | 2.72 | 3100 | 1.2957 | | 1.2274 | 2.8 | 3200 | 1.2955 | | 1.2235 | 2.89 | 3300 | 1.2954 | | 1.2438 | 2.98 | 3400 | 1.2954 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0