File size: 3,254 Bytes
3330dcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f20c416
 
 
 
3330dcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base-finetuned-kinetics
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
model-index:
- name: videomae-base-finetuned-kinetics-fight_22-01-2024
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-base-finetuned-kinetics-fight_22-01-2024

This model is a fine-tuned version of [MCG-NJU/videomae-base-finetuned-kinetics](https://huggingface.co./MCG-NJU/videomae-base-finetuned-kinetics) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2265
- Accuracy: 0.9159
- Precision: 0.9507
- Recall: 0.8773

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 14
- eval_batch_size: 14
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 15820

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | Precision | Recall |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|
| 0.6066        | 0.05  | 792   | 0.5969          | 0.7509   | 0.7817    | 0.6961 |
| 0.429         | 1.05  | 1584  | 0.3898          | 0.8422   | 0.8937    | 0.7767 |
| 0.184         | 2.05  | 2376  | 0.2700          | 0.8859   | 0.9281    | 0.8367 |
| 0.1911        | 3.05  | 3168  | 0.2280          | 0.9028   | 0.9405    | 0.8601 |
| 0.1115        | 4.05  | 3960  | 0.2218          | 0.9063   | 0.9436    | 0.8642 |
| 0.1799        | 5.05  | 4752  | 0.2293          | 0.9090   | 0.9604    | 0.8532 |
| 0.1282        | 6.05  | 5544  | 0.2265          | 0.9159   | 0.9507    | 0.8773 |
| 0.1211        | 7.05  | 6336  | 0.2554          | 0.9087   | 0.9562    | 0.8567 |
| 0.076         | 8.05  | 7128  | 0.2738          | 0.9063   | 0.9588    | 0.8491 |
| 0.1152        | 9.05  | 7920  | 0.2785          | 0.9090   | 0.9541    | 0.8594 |
| 0.0281        | 10.05 | 8712  | 0.2852          | 0.9118   | 0.9537    | 0.8656 |
| 0.0806        | 11.05 | 9504  | 0.2994          | 0.9094   | 0.9548    | 0.8594 |
| 0.0755        | 12.05 | 10296 | 0.3124          | 0.9104   | 0.9556    | 0.8608 |
| 0.0986        | 13.05 | 11088 | 0.3134          | 0.9114   | 0.9462    | 0.8725 |
| 0.0222        | 14.05 | 11880 | 0.3241          | 0.9111   | 0.9550    | 0.8629 |
| 0.0272        | 15.05 | 12672 | 0.3269          | 0.9125   | 0.9503    | 0.8704 |
| 0.0657        | 16.05 | 13464 | 0.3401          | 0.9097   | 0.9556    | 0.8594 |
| 0.1083        | 17.05 | 14256 | 0.3424          | 0.9097   | 0.9549    | 0.8601 |
| 0.0059        | 18.05 | 15048 | 0.3461          | 0.9094   | 0.9555    | 0.8587 |
| 0.0143        | 19.05 | 15820 | 0.3462          | 0.9094   | 0.9555    | 0.8587 |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2