File size: 1,775 Bytes
d59755c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
base_model: google-t5/t5-large
tags:
- generated_from_trainer
model-index:
- name: t5-large-multi_news
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-large-multi_news

This model is a fine-tuned version of [google-t5/t5-large](https://huggingface.co./google-t5/t5-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0627

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step   | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 2.2999        | 1.0   | 11243  | 2.1311          |
| 2.1376        | 2.0   | 22486  | 2.0726          |
| 2.0305        | 3.0   | 33729  | 2.0609          |
| 1.9771        | 4.0   | 44972  | 2.0571          |
| 1.9389        | 5.0   | 56215  | 2.0550          |
| 1.8816        | 6.0   | 67458  | 2.0551          |
| 1.8484        | 7.0   | 78701  | 2.0599          |
| 1.8248        | 8.0   | 89944  | 2.0604          |
| 1.8306        | 9.0   | 101187 | 2.0627          |
| 1.8182        | 10.0  | 112430 | 2.0627          |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2