File size: 5,404 Bytes
2f495e3
 
 
 
 
 
8c39f4f
 
2f495e3
 
55c894f
aac9286
2f495e3
 
8c39f4f
 
 
 
 
 
 
 
 
 
2f495e3
0a5c276
a2eaec5
0a5c276
 
 
 
3affdaf
11a1eff
3affdaf
11a1eff
 
 
 
 
 
 
 
cc816c5
11a1eff
3affdaf
11a1eff
8c39f4f
11a1eff
 
3affdaf
 
11a1eff
8c39f4f
11a1eff
 
 
 
 
 
 
8c39f4f
11a1eff
 
 
 
 
 
 
8c39f4f
11a1eff
 
 
0a5c276
 
 
a0c95a2
0a5c276
 
 
 
 
 
 
 
 
 
 
f330a52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a5c276
 
a2eaec5
0a5c276
 
8c39f4f
0a5c276
 
 
 
 
 
 
a2eaec5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
language:
- en
- de
- fr
- it
- multilingual
license: mit
tags:
- punctuation prediction
- punctuation
datasets: wmt/europarl
metrics:
- f1
widget:
- text: Ho sentito che ti sei laureata il che mi fa molto piacere
  example_title: Italian
- text: Tous les matins vers quatre heures mon p�re ouvrait la porte de ma chambre
  example_title: French
- text: Ist das eine Frage Frau M�ller
  example_title: German
- text: Yet she blushed as if with guilt when Cynthia reading her thoughts said to
    her one day Molly you're very glad to get rid of us are not you
  example_title: English
---

This model predicts the punctuation of English, Italian, French and German texts. We developed it to restore the punctuation of transcribed spoken language. 

This multilanguage model was trained on the [Europarl Dataset](https://huggingface.co./datasets/wmt/europarl) provided by the [SEPP-NLG Shared Task](https://sites.google.com/view/sentence-segmentation). *Please note that this dataset consists of political speeches. Therefore the model might perform differently on texts from other domains.*

The model restores the following punctuation markers: **"." "," "?" "-" ":"**
## Sample Code
We provide a simple python package that allows you to process text of any length.

## Install 

To get started install the package from [pypi](https://pypi.org/project/deepmultilingualpunctuation/):

```bash
pip install deepmultilingualpunctuation
```
### Restore Punctuation
```python
from deepmultilingualpunctuation import PunctuationModel

model = PunctuationModel()
text = "My name is Clara and I live in Berkeley California Ist das eine Frage Frau M�ller"
result = model.restore_punctuation(text)
print(result)
```

**output**
> My name is Clara and I live in Berkeley, California. Ist das eine Frage, Frau M�ller?


### Predict Labels 
```python
from deepmultilingualpunctuation import PunctuationModel

model = PunctuationModel()
text = "My name is Clara and I live in Berkeley California Ist das eine Frage Frau M�ller"
clean_text = model.preprocess(text)
labled_words = model.predict(clean_text)
print(labled_words)
```

**output**

> [['My', '0', 0.9999887], ['name', '0', 0.99998665], ['is', '0', 0.9998579], ['Clara', '0', 0.6752215], ['and', '0', 0.99990904], ['I', '0', 0.9999877], ['live', '0', 0.9999839], ['in', '0', 0.9999515], ['Berkeley', ',', 0.99800044], ['California', '.', 0.99534047], ['Ist', '0', 0.99998784], ['das', '0', 0.99999154], ['eine', '0', 0.9999918], ['Frage', ',', 0.99622655], ['Frau', '0', 0.9999889], ['M�ller', '?', 0.99863917]]




## Results 

The performance differs for the single punctuation markers as hyphens and colons, in many cases, are optional and can be substituted by either a comma or a full stop. The model achieves the following F1 scores for the different languages:

| Label         | EN    | DE    | FR    | IT    |
| ------------- | ----- | ----- | ----- | ----- |
| 0             | 0.991 | 0.997 | 0.992 | 0.989 |
| .             | 0.948 | 0.961 | 0.945 | 0.942 |
| ?             | 0.890 | 0.893 | 0.871 | 0.832 |
| ,             | 0.819 | 0.945 | 0.831 | 0.798 |
| :             | 0.575 | 0.652 | 0.620 | 0.588 |
| -             | 0.425 | 0.435 | 0.431 | 0.421 |
| macro average | 0.775 | 0.814 | 0.782 | 0.762 |

## Languages

### Models

| Languages                                  | Model                                                        |
| ------------------------------------------ | ------------------------------------------------------------ |
| English, Italian, French and German        | [oliverguhr/fullstop-punctuation-multilang-large](https://huggingface.co./oliverguhr/fullstop-punctuation-multilang-large) |
| English, Italian, French, German and Dutch | [oliverguhr/fullstop-punctuation-multilingual-sonar-base](https://huggingface.co./oliverguhr/fullstop-punctuation-multilingual-sonar-base) |
| Dutch                                      | [oliverguhr/fullstop-dutch-sonar-punctuation-prediction](https://huggingface.co./oliverguhr/fullstop-dutch-sonar-punctuation-prediction) |

### Community Models

| Languages                                  | Model                                                        |
| ------------------------------------------ | ------------------------------------------------------------ |
|English, German, French, Spanish, Bulgarian, Italian, Polish, Dutch, Czech, Portugese, Slovak, Slovenian| [kredor/punctuate-all](https://huggingface.co./kredor/punctuate-all)                                                             |
| Catalan                                    | [softcatala/fullstop-catalan-punctuation-prediction](https://huggingface.co./softcatala/fullstop-catalan-punctuation-prediction) |

You can use different models by setting the model parameter:

```python
model = PunctuationModel(model = "oliverguhr/fullstop-dutch-punctuation-prediction")
```



## References
```
@article{guhr-EtAl:2021:fullstop,
  title={FullStop: Multilingual Deep Models for Punctuation Prediction},
  author    = {Guhr, Oliver  and  Schumann, Anne-Kathrin  and  Bahrmann, Frank  and  B�hme, Hans Joachim},
  booktitle      = {Proceedings of the Swiss Text Analytics Conference 2021},
  month          = {June},
  year           = {2021},
  address        = {Winterthur, Switzerland},
  publisher      = {CEUR Workshop Proceedings},  
  url       = {http://ceur-ws.org/Vol-2957/sepp_paper4.pdf}
}
```