--- license: llama3 base_model: meta-llama/Meta-Llama-3-8B tags: - axolotl - generated_from_trainer model-index: - name: Llama-3-8B-flan results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: meta-llama/Meta-Llama-3-8B model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: /vast/work/public/ml-datasets/flan/cot_submix_data.jsonl type: system_prompt: "You are a helpful, smart, kind, and efficient AI assistant. You always fulfill the user's requests to the best of your ability." field_system: system field_instruction: inputs field_output: targets - path: /vast/work/public/ml-datasets/flan/niv2_submix_data.jsonl type: system_prompt: "You are a helpful, smart, kind, and efficient AI assistant. You always fulfill the user's requests to the best of your ability." field_system: system field_instruction: inputs field_output: targets - path: /vast/work/public/ml-datasets/flan/dialog_submix_data.jsonl type: system_prompt: "You are a helpful, smart, kind, and efficient AI assistant. You always fulfill the user's requests to the best of your ability." field_system: system field_instruction: inputs field_output: targets dataset_prepared_path: /scratch/bf996/axolotl/datasets/flan-mix val_set_size: 0.001 output_dir: /scratch/bf996/axolotl/outputs/llama3-8b-flan-v2.0 chat_template: llama3 sequence_len: 8192 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true wandb_project: lm-evals wandb_entity: wandb_watch: wandb_name: Llama-3-8B-flan wandb_log_model: hub_model_id: penfever/Llama-3-8B-flan shuffle_merged_datasets: true gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 2 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 2e-5 max_steps: 10000 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 evals_per_epoch: 2 eval_table_size: save_strategy: steps save_steps: 500 save_total_limit: 5 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```

[Visualize in Weights & Biases](https://wandb.ai/nyu-dice-lab/lm-evals/runs/3cv1xhof) # Llama-3-8B-flan This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co./meta-llama/Meta-Llama-3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 2.0576 | 0.0000 | 1 | nan | | 1.172 | 0.1090 | 2500 | nan | | 1.194 | 0.2181 | 5000 | nan | | 1.1629 | 0.3271 | 7500 | nan | | 1.0608 | 0.4362 | 10000 | nan | ### Framework versions - Transformers 4.43.0.dev0 - Pytorch 2.3.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1