erastorgueva-nv commited on
Commit
80dc66f
1 Parent(s): ec98423

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +182 -0
README.md CHANGED
@@ -1,3 +1,185 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - es
4
+ library_name: nemo
5
+ datasets:
6
+ - Fisher
7
+ - VoxPopuli
8
+ - facebook/multilingual_librispeech
9
+ - mozilla-foundation/common_voice_7_0
10
+ thumbnail: null
11
+ tags:
12
+ - automatic-speech-recognition
13
+ - speech
14
+ - audio
15
+ - Transducer
16
+ - Conformer
17
+ - Transformer
18
+ - pytorch
19
+ - NeMo
20
+ - hf-asr-leaderboard
21
+ - Riva
22
  license: cc-by-4.0
23
+ model-index:
24
+ - name: stt_es_conformer_transducer_large
25
+ results:
26
+ - task:
27
+ type: Automatic Speech Recognition
28
+ name: speech-recognition
29
+ dataset:
30
+ name: common-voice-7-0-6
31
+ type: mozilla-foundation/common_voice_7_0
32
+ config: es
33
+ split: dev
34
+ args:
35
+ language: es
36
+ metrics:
37
+ - name: Dev WER
38
+ type: wer
39
+ value: 4.6
40
+ - task:
41
+ type: Automatic Speech Recognition
42
+ name: speech-recognition
43
+ dataset:
44
+ name: common-voice-7-0-6
45
+ type: mozilla-foundation/common_voice_7_0
46
+ config: es
47
+ split: test
48
+ args:
49
+ language: es
50
+ metrics:
51
+ - name: Test WER
52
+ type: wer
53
+ value: 5.2
54
+ - task:
55
+ type: Automatic Speech Recognition
56
+ name: automatic-speech-recognition
57
+ dataset:
58
+ name: Multilingual LibriSpeech
59
+ type: facebook/multilingual_librispeech
60
+ config: spanish
61
+ split: dev
62
+ args:
63
+ language: es
64
+ metrics:
65
+ - name: Dev WER
66
+ type: wer
67
+ value: 2.7
68
+ - task:
69
+ type: Automatic Speech Recognition
70
+ name: automatic-speech-recognition
71
+ dataset:
72
+ name: Multilingual LibriSpeech
73
+ type: facebook/multilingual_librispeech
74
+ config: spanish
75
+ split: test
76
+ args:
77
+ language: es
78
+ metrics:
79
+ - name: Test WER
80
+ type: wer
81
+ value: 3.2
82
+
83
  ---
84
+ # NVIDIA Conformer-Transducer Large (es)
85
+
86
+ <style>
87
+ img {
88
+ display: inline;
89
+ }
90
+ </style>
91
+
92
+ | [![Model architecture](https://img.shields.io/badge/Model_Arch-Conformer--Transformer-lightgrey#model-badge)](#model-architecture)
93
+ | [![Model size](https://img.shields.io/badge/Params-120M-lightgrey#model-badge)](#model-architecture)
94
+ | [![Language](https://img.shields.io/badge/Language-es-lightgrey#model-badge)](#datasets)
95
+ | [![Riva Compatible](https://img.shields.io/badge/NVIDIA%20Riva-compatible-brightgreen#model-badge)](#deployment-with-nvidia-riva) |
96
+
97
+
98
+ This model transcribes speech in lowercase Spanish alphabet including spaces, and was trained on a composite dataset comprising of 1340 hours of Spanish speech. It is a "large" variant of Conformer-Transducer, with around 120 million parameters.
99
+ See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer-transducer) for complete architecture details.
100
+ It is also compatible with NVIDIA Riva for [production-grade server deployments](#deployment-with-nvidia-riva).
101
+
102
+
103
+ ## Usage
104
+
105
+ The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
106
+
107
+ To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest PyTorch version.
108
+
109
+ ```
110
+ pip install nemo_toolkit['all']
111
+ ```
112
+
113
+ ### Automatically instantiate the model
114
+
115
+ ```python
116
+ import nemo.collections.asr as nemo_asr
117
+ asr_model = nemo_asr.models.EncDecCTCModelBPE.from_pretrained("nvidia/stt_es_conformer_transducer_large")
118
+ ```
119
+
120
+ ### Transcribing using Python
121
+ First, let's get a sample
122
+ ```
123
+ wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
124
+ ```
125
+ Then simply do:
126
+ ```
127
+ asr_model.transcribe(['2086-149220-0033.wav'])
128
+ ```
129
+
130
+ ### Transcribing many audio files
131
+
132
+ ```shell
133
+ python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
134
+ pretrained_name="nvidia/stt_es_conformer_transducer_large"
135
+ audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
136
+ ```
137
+
138
+ ### Input
139
+
140
+ This model accepts 16000 kHz Mono-channel Audio (wav files) as input.
141
+
142
+ ### Output
143
+
144
+ This model provides transcribed speech as a string for a given audio sample.
145
+
146
+ ## Model Architecture
147
+
148
+ Conformer-Transducer model is an autoregressive variant of Conformer model [1] for Automatic Speech Recognition which uses Transducer loss/decoding instead of CTC Loss. You may find more info on the detail of this model here: [Conformer-Transducer Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer-transducer).
149
+
150
+ ## Training
151
+
152
+ The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_ctc/speech_to_text_rnnt_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/conformer/conformer_rnnt_bpe.yaml).
153
+
154
+ The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).
155
+
156
+ ### Datasets
157
+
158
+ All the models in this collection are trained on a composite dataset (NeMo ASRSET) comprising of 1340 hours of Spanish speech:
159
+
160
+ - Mozilla Common Voice 7.0 (Spanish) - 289 hours after data cleaning
161
+ - Multilingual LibriSpeech (Spanish) - 801 hours after data cleaning
162
+ - Voxpopuli transcribed subset (Spanish) - 110 hours after data cleaning
163
+ - Fisher dataset (Spanish) - 140 hours after data cleaning
164
+
165
+ ## Performance
166
+
167
+ The list of the available models in this collection is shown in the following table. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding.
168
+
169
+ | Version | Tokenizer | Vocabulary Size | MCV 7.0 Dev | MCV 7.0 Test | MLS Dev | MLS Test | Voxpopuli Dev | Voxpopuli Test | Fisher Dev | Fisher Test| Train Dataset |
170
+ |---------|-----------------------|-----------------|-------------|--------------|---------|----------|---------------|----------------|------------|-------------|-----------------|
171
+ | 1.8.0 | SentencePiece Unigram | 1024 | 4.6 | 5.2 | 2.7 | 3.2 | 4.7 | 6.0 | 14.7 | 14.8 | NeMo ASRSET 2.0 |
172
+
173
+ ## Limitations
174
+ Since this model was trained on publicly available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech.
175
+ ## Deployment with NVIDIA Riva
176
+ For the best real-time accuracy, latency, and throughput, deploy the model with [NVIDIA Riva](https://developer.nvidia.com/riva), an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, at the edge, and embedded.
177
+ Additionally, Riva provides:
178
+ * World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours
179
+ * Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization
180
+ * Streaming speech recognition, Kubernetes compatible scaling, and Enterprise-grade support
181
+ Check out [Riva live demo](https://developer.nvidia.com/riva#demos).
182
+ ## References
183
+ - [1] [Conformer: Convolution-augmented Transformer for Speech Recognition](https://arxiv.org/abs/2005.08100)
184
+ - [2] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece)
185
+ - [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)