zihanliu commited on
Commit
fb85a90
·
verified ·
1 Parent(s): 77fdfe5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -12,11 +12,11 @@ license:
12
  ---
13
 
14
  ## Model Description
15
- We introduce Dragon-multiturn, a retriever specifically designed for the conversational QA scenario. It can handle conversational query which combine dialogue history with the current query. It is built on top of the [Dragon](https://huggingface.co/facebook/dragon-plus-query-encoder) retriever. The details of Dragon-multiturn can be found in [here](https://arxiv.org/abs/2401.10225). **Please note that Dragon-multiturn is a dual encoder consisting of a query encoder and a context encoder. This repository is only for the query encoder of Dragon-multiturn for getting the query embeddings, and you also need the context encoder to get context embeddings, which can be found [here](https://huggingface.co/nvidia/dragon-multiturn-context-encoder). Both query encoder and context encoder share the same tokenizer.**
16
 
17
 
18
  ## Other Resources
19
- [Llama3-ChatQA-1.5-8B](https://huggingface.co/nvidia/Llama3-ChatQA-1.5-8B)   [Llama3-ChatQA-1.5-70B](https://huggingface.co/nvidia/Llama3-ChatQA-1.5-70B)   [Evaluation Data](https://huggingface.co/datasets/nvidia/ChatRAG-Bench)   [Training Data](https://huggingface.co/datasets/nvidia/ChatQA-Training-Data)   [Website](https://chatqa-project.github.io/)   [Paper](https://arxiv.org/abs/2401.10225)
20
 
21
  ## Benchmark Results
22
  <style type="text/css">
@@ -141,7 +141,7 @@ Zihan Liu ([email protected]), Wei Ping ([email protected])
141
  ## Citation
142
  <pre>
143
  @article{liu2024chatqa,
144
- title={ChatQA: Building GPT-4 Level Conversational QA Models},
145
  author={Liu, Zihan and Ping, Wei and Roy, Rajarshi and Xu, Peng and Lee, Chankyu and Shoeybi, Mohammad and Catanzaro, Bryan},
146
  journal={arXiv preprint arXiv:2401.10225},
147
  year={2024}}
 
12
  ---
13
 
14
  ## Model Description
15
+ We introduce Dragon-multiturn, a retriever specifically designed for the conversational QA scenario. It can handle conversational query which combine dialogue history with the current query. It is built on top of the [Dragon](https://huggingface.co/facebook/dragon-plus-query-encoder) retriever. The details of Dragon-multiturn can be found in [here](https://arxiv.org/pdf/2401.10225v3). **Please note that Dragon-multiturn is a dual encoder consisting of a query encoder and a context encoder. This repository is only for the query encoder of Dragon-multiturn for getting the query embeddings, and you also need the context encoder to get context embeddings, which can be found [here](https://huggingface.co/nvidia/dragon-multiturn-context-encoder). Both query encoder and context encoder share the same tokenizer.**
16
 
17
 
18
  ## Other Resources
19
+ [Llama3-ChatQA-1.5-8B](https://huggingface.co/nvidia/Llama3-ChatQA-1.5-8B) &ensp; [Llama3-ChatQA-1.5-70B](https://huggingface.co/nvidia/Llama3-ChatQA-1.5-70B) &ensp; [Evaluation Data](https://huggingface.co/datasets/nvidia/ChatRAG-Bench) &ensp; [Training Data](https://huggingface.co/datasets/nvidia/ChatQA-Training-Data) &ensp; [Website](https://chatqa-project.github.io/) &ensp; [Paper](https://arxiv.org/pdf/2401.10225v3)
20
 
21
  ## Benchmark Results
22
  <style type="text/css">
 
141
  ## Citation
142
  <pre>
143
  @article{liu2024chatqa,
144
+ title={ChatQA: Surpassing GPT-4 on Conversational QA and RAG},
145
  author={Liu, Zihan and Ping, Wei and Roy, Rajarshi and Xu, Peng and Lee, Chankyu and Shoeybi, Mohammad and Catanzaro, Bryan},
146
  journal={arXiv preprint arXiv:2401.10225},
147
  year={2024}}