Update README.md
Browse files
README.md
CHANGED
@@ -59,11 +59,11 @@ import torch
|
|
59 |
import soundfile as sf
|
60 |
from nemo.collections.tts.models import AudioCodecModel
|
61 |
|
62 |
-
|
63 |
path_to_input_audio = ??? # path of the input audio
|
64 |
path_to_output_audio = ??? # path of the reconstructed output audio
|
65 |
|
66 |
-
nemo_codec_model = AudioCodecModel.
|
67 |
|
68 |
# get discrete tokens from audio
|
69 |
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
|
@@ -72,10 +72,11 @@ device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
72 |
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
|
73 |
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
79 |
|
80 |
# save reconstructed audio
|
81 |
output_audio = reconstructed_audio.cpu().numpy().squeeze()
|
|
|
59 |
import soundfile as sf
|
60 |
from nemo.collections.tts.models import AudioCodecModel
|
61 |
|
62 |
+
model_name = "nvidia/audio-codec-44khz"
|
63 |
path_to_input_audio = ??? # path of the input audio
|
64 |
path_to_output_audio = ??? # path of the reconstructed output audio
|
65 |
|
66 |
+
nemo_codec_model = AudioCodecModel.from_pretrained(model_name).eval()
|
67 |
|
68 |
# get discrete tokens from audio
|
69 |
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
|
|
|
72 |
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
|
73 |
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
|
74 |
|
75 |
+
with torch.no_grad():
|
76 |
+
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
|
77 |
+
|
78 |
+
# Reconstruct audio from tokens
|
79 |
+
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
|
80 |
|
81 |
# save reconstructed audio
|
82 |
output_audio = reconstructed_audio.cpu().numpy().squeeze()
|