mranzinger
commited on
Upload model (#2)
Browse files- Upload model (8a44aab200322f75938b0a898aba31e6b29950ae)
- config.json +1 -1
- enable_spectral_reparam.py +227 -0
- eradio_model.py +3 -0
- hf_model.py +11 -1
- model.safetensors +2 -2
- radio_model.py +15 -0
config.json
CHANGED
@@ -354,7 +354,7 @@
|
|
354 |
432
|
355 |
],
|
356 |
"torch_dtype": "bfloat16",
|
357 |
-
"transformers_version": "4.
|
358 |
"version": "radio_v2.1",
|
359 |
"vitdet_window_size": null
|
360 |
}
|
|
|
354 |
432
|
355 |
],
|
356 |
"torch_dtype": "bfloat16",
|
357 |
+
"transformers_version": "4.40.1",
|
358 |
"version": "radio_v2.1",
|
359 |
"vitdet_window_size": null
|
360 |
}
|
enable_spectral_reparam.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from logging import getLogger
|
2 |
+
import math
|
3 |
+
import os
|
4 |
+
from typing import Union, Tuple
|
5 |
+
from types import MethodType
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
from torch.nn.utils import parametrize
|
11 |
+
from torch.nn.utils.parametrizations import _SpectralNorm
|
12 |
+
|
13 |
+
from timm.models.vision_transformer import Attention, Mlp
|
14 |
+
|
15 |
+
_EPS = 1e-5
|
16 |
+
|
17 |
+
|
18 |
+
class _SNReweight(_SpectralNorm):
|
19 |
+
def __init__(self, weight: torch.Tensor, *args, init_norm_to_current: bool = False, alpha: float = 0.05, version: int = 2, **kwargs):
|
20 |
+
super().__init__(weight, *args, **kwargs)
|
21 |
+
|
22 |
+
self.alpha = alpha
|
23 |
+
self.version = version
|
24 |
+
self.register_buffer('_sn_version', torch.tensor(version))
|
25 |
+
|
26 |
+
if init_norm_to_current:
|
27 |
+
# This will set the numerator to match the denominator, which should preserve the original values
|
28 |
+
init_scale = self._get_sigma(weight).item()
|
29 |
+
else:
|
30 |
+
init_scale = 1.0
|
31 |
+
|
32 |
+
if version == 1:
|
33 |
+
init_value = init_scale
|
34 |
+
elif version == 2:
|
35 |
+
t = init_scale - alpha
|
36 |
+
if t < _EPS:
|
37 |
+
getLogger("spectral_reparam").warn(f'The initialized spectral norm {init_scale} is too small to be represented. Setting to {_EPS} instead.')
|
38 |
+
t = _EPS
|
39 |
+
|
40 |
+
init_value = math.log(math.exp(t) - 1)
|
41 |
+
else:
|
42 |
+
raise ValueError(f'Unsupported version: {version}')
|
43 |
+
|
44 |
+
# Make 2D so that weight decay gets applied
|
45 |
+
self.scale = nn.Parameter(torch.tensor([[init_value]], dtype=torch.float32, device=weight.device))
|
46 |
+
|
47 |
+
# Re-implementing this because we need to make division by sigma safe
|
48 |
+
def _get_sigma(self, weight: torch.Tensor) -> torch.Tensor:
|
49 |
+
if weight.ndim == 1:
|
50 |
+
# Faster and more exact path, no need to approximate anything
|
51 |
+
sigma = weight.norm()
|
52 |
+
else:
|
53 |
+
weight_mat = self._reshape_weight_to_matrix(weight)
|
54 |
+
if self.training:
|
55 |
+
self._power_method(weight_mat, self.n_power_iterations)
|
56 |
+
# See above on why we need to clone
|
57 |
+
u = self._u.clone(memory_format=torch.contiguous_format)
|
58 |
+
v = self._v.clone(memory_format=torch.contiguous_format)
|
59 |
+
# The proper way of computing this should be through F.bilinear, but
|
60 |
+
# it seems to have some efficiency issues:
|
61 |
+
# https://github.com/pytorch/pytorch/issues/58093
|
62 |
+
sigma = torch.dot(u, torch.mv(weight_mat, v))
|
63 |
+
|
64 |
+
return sigma + self.eps
|
65 |
+
|
66 |
+
def forward(self, weight: torch.Tensor, *args, **kwargs):
|
67 |
+
dtype = weight.dtype
|
68 |
+
sigma = self._get_sigma(weight, *args, **kwargs)
|
69 |
+
|
70 |
+
if self.version == 1:
|
71 |
+
scale = self.scale
|
72 |
+
elif self.version == 2:
|
73 |
+
scale = F.softplus(self.scale) + self.alpha
|
74 |
+
else:
|
75 |
+
raise ValueError(f'Unsupported version: {self.version}')
|
76 |
+
|
77 |
+
scale = scale.float() / sigma.float()
|
78 |
+
|
79 |
+
y = weight * scale
|
80 |
+
|
81 |
+
if dtype in (torch.float16, torch.bfloat16):
|
82 |
+
y = y.to(dtype)
|
83 |
+
return y
|
84 |
+
|
85 |
+
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
|
86 |
+
version_key = f'{prefix}_sn_version'
|
87 |
+
if version_key not in state_dict:
|
88 |
+
self.version = 1
|
89 |
+
state_dict[version_key] = torch.tensor(1)
|
90 |
+
return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
|
91 |
+
|
92 |
+
|
93 |
+
class _AttnSNReweight(nn.Module):
|
94 |
+
def __init__(self, weight: torch.Tensor, *args, init_norm_to_current: bool = False, renorm_values: bool = False, **kwargs):
|
95 |
+
super().__init__()
|
96 |
+
|
97 |
+
parts = weight.split(weight.shape[0] // 3, dim=0)
|
98 |
+
|
99 |
+
ct = 2 if not renorm_values else 3
|
100 |
+
|
101 |
+
self.parts = nn.ModuleList([
|
102 |
+
_SNReweight(p, *args, init_norm_to_current=init_norm_to_current, **kwargs) if i < ct else nn.Identity()
|
103 |
+
for i, p in enumerate(parts)
|
104 |
+
])
|
105 |
+
|
106 |
+
def forward(self, weight: torch.Tensor, *args, **kwargs):
|
107 |
+
parts = weight.split(weight.shape[0] // 3, dim=0)
|
108 |
+
|
109 |
+
parts = [
|
110 |
+
fn(p)
|
111 |
+
for fn, p in zip(self.parts, parts)
|
112 |
+
]
|
113 |
+
|
114 |
+
return torch.cat(parts, dim=0)
|
115 |
+
|
116 |
+
|
117 |
+
def enable_spectral_reparam(model: nn.Module,
|
118 |
+
n_power_iterations: int = 1,
|
119 |
+
eps: float = 1e-6,
|
120 |
+
init_norm_to_current: bool = False,
|
121 |
+
renorm_values: bool = True,
|
122 |
+
renorm_mlp: bool = True):
|
123 |
+
# print('Enabling spectral reparametrization')
|
124 |
+
for mod in model.modules():
|
125 |
+
if isinstance(mod, Attention):
|
126 |
+
parametrize.register_parametrization(
|
127 |
+
mod.qkv,
|
128 |
+
'weight',
|
129 |
+
_AttnSNReweight(mod.qkv.weight, n_power_iterations, dim=0, eps=eps, init_norm_to_current=init_norm_to_current, renorm_values=renorm_values),
|
130 |
+
)
|
131 |
+
pass
|
132 |
+
elif isinstance(mod, Mlp) and renorm_mlp:
|
133 |
+
parametrize.register_parametrization(
|
134 |
+
mod.fc1,
|
135 |
+
'weight',
|
136 |
+
_SNReweight(mod.fc1.weight, n_power_iterations, dim=0, eps=eps, init_norm_to_current=init_norm_to_current),
|
137 |
+
)
|
138 |
+
parametrize.register_parametrization(
|
139 |
+
mod.fc2,
|
140 |
+
'weight',
|
141 |
+
_SNReweight(mod.fc2.weight, n_power_iterations, dim=0, eps=eps, init_norm_to_current=init_norm_to_current),
|
142 |
+
)
|
143 |
+
pass
|
144 |
+
|
145 |
+
|
146 |
+
def configure_spectral_reparam_from_args(model: nn.Module, args):
|
147 |
+
spectral_reparam = getattr(args, 'spectral_reparam', False)
|
148 |
+
if isinstance(spectral_reparam, bool) and spectral_reparam:
|
149 |
+
enable_spectral_reparam(model, init_norm_to_current=args.pretrained)
|
150 |
+
elif isinstance(spectral_reparam, dict):
|
151 |
+
enable_spectral_reparam(
|
152 |
+
model,
|
153 |
+
n_power_iterations=spectral_reparam.get('n_power_iterations', 1),
|
154 |
+
eps=spectral_reparam.get('eps', 1e-12),
|
155 |
+
init_norm_to_current=args.pretrained,
|
156 |
+
)
|
157 |
+
|
158 |
+
|
159 |
+
def disable_spectral_reparam(model: nn.Module):
|
160 |
+
for mod in model.modules():
|
161 |
+
if isinstance(mod, Attention):
|
162 |
+
parametrize.remove_parametrizations(mod.qkv, 'weight')
|
163 |
+
pass
|
164 |
+
elif isinstance(mod, Mlp):
|
165 |
+
parametrize.remove_parametrizations(mod.fc1, 'weight')
|
166 |
+
parametrize.remove_parametrizations(mod.fc2, 'weight')
|
167 |
+
pass
|
168 |
+
|
169 |
+
|
170 |
+
if __name__ == '__main__':
|
171 |
+
import argparse
|
172 |
+
from . import radio_model as create_model
|
173 |
+
|
174 |
+
parser = argparse.ArgumentParser(description='Remove parametrization from state dict')
|
175 |
+
parser.add_argument('--checkpoint', type=str, required=True, help='The checkpoint to load')
|
176 |
+
parser.add_argument('--output', type=str, default='', help='Where to store the checkpoint')
|
177 |
+
parser.add_argument('--release', default=False, action='store_true', help='Prune extraneous checkpoint fields')
|
178 |
+
parser.add_argument('--strict', default=False, action='store_true', help='Strictly load the state dict')
|
179 |
+
|
180 |
+
args = parser.parse_args()
|
181 |
+
|
182 |
+
if not args.output:
|
183 |
+
chk_dir, chk_name = os.path.split(args.checkpoint)
|
184 |
+
args.output = os.path.join(chk_dir, f'clean_{chk_name}')
|
185 |
+
print(f'Set output to "{args.output}"')
|
186 |
+
|
187 |
+
chk = torch.load(args.checkpoint, map_location='cpu', mmap=True)
|
188 |
+
|
189 |
+
model = create_model.create_model_from_args(chk['args'])
|
190 |
+
|
191 |
+
key = 'base_model.'
|
192 |
+
mod_state = dict()
|
193 |
+
extra_state = dict()
|
194 |
+
for k, v in chk['state_dict'].items():
|
195 |
+
if k.startswith(key):
|
196 |
+
mod_state[k[len(key):]] = v
|
197 |
+
else:
|
198 |
+
extra_state[k] = v
|
199 |
+
|
200 |
+
chk_load_info = model.load_state_dict(mod_state, strict=args.strict)
|
201 |
+
if chk_load_info.unexpected_keys or chk_load_info.missing_keys:
|
202 |
+
print(chk_load_info)
|
203 |
+
|
204 |
+
if chk['args'].spectral_reparam:
|
205 |
+
disable_spectral_reparam(model)
|
206 |
+
|
207 |
+
if hasattr(chk['args'], 'dtype'):
|
208 |
+
model.to(dtype=chk['args'].dtype)
|
209 |
+
|
210 |
+
mod_state = model.state_dict()
|
211 |
+
final_state = dict()
|
212 |
+
final_state.update({f'{key}{k}': v for k, v in mod_state.items()})
|
213 |
+
final_state.update(extra_state)
|
214 |
+
|
215 |
+
chk['state_dict'] = final_state
|
216 |
+
chk['args'].spectral_reparam = False
|
217 |
+
|
218 |
+
if args.release:
|
219 |
+
chk = {
|
220 |
+
'arch': chk['arch'],
|
221 |
+
'epoch': chk['epoch'],
|
222 |
+
'state_dict': chk['state_dict'],
|
223 |
+
'args': chk['args'],
|
224 |
+
}
|
225 |
+
|
226 |
+
torch.save(chk, args.output)
|
227 |
+
pass
|
eradio_model.py
CHANGED
@@ -1162,6 +1162,9 @@ class FasterViT(nn.Module):
|
|
1162 |
return {'rpb'}
|
1163 |
|
1164 |
def forward_features(self, x):
|
|
|
|
|
|
|
1165 |
x = self.patch_embed(x)
|
1166 |
full_features = None
|
1167 |
for il, level in enumerate(self.levels):
|
|
|
1162 |
return {'rpb'}
|
1163 |
|
1164 |
def forward_features(self, x):
|
1165 |
+
_, _, H, W = x.shape
|
1166 |
+
if H % 32 != 0 or W % 32 != 0:
|
1167 |
+
raise ValueError(f"E-RADIO requires input dimensions to be divisible by 32 but got H x W: {H} x {W}")
|
1168 |
x = self.patch_embed(x)
|
1169 |
full_features = None
|
1170 |
for il, level in enumerate(self.levels):
|
hf_model.py
CHANGED
@@ -12,7 +12,7 @@
|
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
from collections import namedtuple
|
15 |
-
from typing import Optional, List, Union
|
16 |
|
17 |
from timm.models import VisionTransformer
|
18 |
import torch
|
@@ -20,6 +20,7 @@ from transformers import PretrainedConfig, PreTrainedModel
|
|
20 |
|
21 |
|
22 |
from .common import RESOURCE_MAP, DEFAULT_VERSION
|
|
|
23 |
# Force import of eradio_model in order to register it.
|
24 |
from .eradio_model import eradio
|
25 |
from .radio_model import create_model_from_args
|
@@ -122,5 +123,14 @@ class RADIOModel(PreTrainedModel):
|
|
122 |
def input_conditioner(self) -> InputConditioner:
|
123 |
return self.radio_model.input_conditioner
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
def forward(self, x: torch.Tensor):
|
126 |
return self.radio_model.forward(x)
|
|
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
from collections import namedtuple
|
15 |
+
from typing import Callable, Optional, List, Union
|
16 |
|
17 |
from timm.models import VisionTransformer
|
18 |
import torch
|
|
|
20 |
|
21 |
|
22 |
from .common import RESOURCE_MAP, DEFAULT_VERSION
|
23 |
+
|
24 |
# Force import of eradio_model in order to register it.
|
25 |
from .eradio_model import eradio
|
26 |
from .radio_model import create_model_from_args
|
|
|
123 |
def input_conditioner(self) -> InputConditioner:
|
124 |
return self.radio_model.input_conditioner
|
125 |
|
126 |
+
@input_conditioner.setter
|
127 |
+
def input_conditioner(self, v: InputConditioner):
|
128 |
+
self.radio_model.input_conditioner = v
|
129 |
+
|
130 |
+
def make_preprocessor_external(self) -> Callable[[torch.Tensor], torch.Tensor]:
|
131 |
+
ret = self.input_conditioner
|
132 |
+
self.input_conditioner = nn.Identity()
|
133 |
+
return ret
|
134 |
+
|
135 |
def forward(self, x: torch.Tensor):
|
136 |
return self.radio_model.forward(x)
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03534ca8b7a26b0cbf69073b944fdd47f41aedad1b3b01c1e387c27191abc8de
|
3 |
+
size 1304018880
|
radio_model.py
CHANGED
@@ -18,6 +18,7 @@ from .input_conditioner import InputConditioner
|
|
18 |
from . import extra_timm_models
|
19 |
from .adaptor_base import AdaptorBase, RadioOutput, AdaptorInput
|
20 |
from . import eradio_model
|
|
|
21 |
|
22 |
|
23 |
class Resolution(NamedTuple):
|
@@ -106,6 +107,12 @@ class RADIOModel(nn.Module):
|
|
106 |
fn()
|
107 |
|
108 |
def forward(self, x: torch.Tensor) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
x = self.input_conditioner(x)
|
110 |
y = self.model.forward_features(x)
|
111 |
|
@@ -180,6 +187,11 @@ def create_model_from_args(args) -> nn.Module:
|
|
180 |
**args.model_kwargs,
|
181 |
)
|
182 |
|
|
|
|
|
|
|
|
|
|
|
183 |
assert (
|
184 |
not args.cls_token_per_teacher or args.cpe_max_size is not None
|
185 |
), "CPE must be enabled for multiple CLS tokens!"
|
@@ -192,4 +204,7 @@ def create_model_from_args(args) -> nn.Module:
|
|
192 |
register_multiple=args.register_multiple,
|
193 |
)
|
194 |
|
|
|
|
|
|
|
195 |
return model
|
|
|
18 |
from . import extra_timm_models
|
19 |
from .adaptor_base import AdaptorBase, RadioOutput, AdaptorInput
|
20 |
from . import eradio_model
|
21 |
+
from .enable_spectral_reparam import configure_spectral_reparam_from_args
|
22 |
|
23 |
|
24 |
class Resolution(NamedTuple):
|
|
|
107 |
fn()
|
108 |
|
109 |
def forward(self, x: torch.Tensor) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
110 |
+
res_step = self.min_resolution_step
|
111 |
+
if res_step is not None and (x.shape[-2] % res_step != 0 or x.shape[-1] % res_step != 0):
|
112 |
+
raise ValueError('The input resolution must be a multiple of `self.min_resolution_step`. '
|
113 |
+
'`self.get_nearest_supported_resolution(<height>, <width>) is provided as a convenience API. '
|
114 |
+
f'Input: {x.shape[-2:]}, Nearest: {self.get_nearest_supported_resolution(*x.shape[-2:])}')
|
115 |
+
|
116 |
x = self.input_conditioner(x)
|
117 |
y = self.model.forward_features(x)
|
118 |
|
|
|
187 |
**args.model_kwargs,
|
188 |
)
|
189 |
|
190 |
+
if hasattr(model, 'norm') and not getattr(args, 'model_norm', False):
|
191 |
+
model.norm = nn.Identity()
|
192 |
+
|
193 |
+
model.head = nn.Identity()
|
194 |
+
|
195 |
assert (
|
196 |
not args.cls_token_per_teacher or args.cpe_max_size is not None
|
197 |
), "CPE must be enabled for multiple CLS tokens!"
|
|
|
204 |
register_multiple=args.register_multiple,
|
205 |
)
|
206 |
|
207 |
+
if args.spectral_reparam:
|
208 |
+
configure_spectral_reparam_from_args(model, args)
|
209 |
+
|
210 |
return model
|