igitman commited on
Commit
a9c240c
·
verified ·
1 Parent(s): 68fed43

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +36 -7
README.md CHANGED
@@ -35,9 +35,9 @@ The model outperforms [Llama3.1-8B-Instruct](https://huggingface.co/meta-llama/L
35
  </style>
36
 
37
  <div class="image-container">
38
- <img src="scaling_plot.jpg" title="Performance of Llama-3.1-8B-Instruct as it is trained on increasing proportions of OpenMathInstruct-2">
39
- <img src="math_level_comp.jpg" title="Comparison of OpenMath2-Llama3.1-8B vs. Llama-3.1-8B-Instruct across MATH levels">
40
- </div>
41
 
42
  | Model | GSM8K | MATH | AMC 2023 | AIME 2024 | Omni-MATH |
43
  |:---|:---:|:---:|:---:|:---:|:---:|
@@ -54,13 +54,42 @@ The pipeline we used to produce the data and models is fully open-sourced!
54
  - [Models](https://huggingface.co/collections/nvidia/openmath-2-66fb142317d86400783d2c7b)
55
  - [Dataset](https://huggingface.co/datasets/nvidia/OpenMathInstruct-2)
56
 
 
57
 
58
  # How to use the models?
59
 
60
- Our models are fully compatible with Llama3.1-instruct format, so you should be able to just replace an existing Llama3.1 checkpoint and use it in the same way.
61
- Please note that these models have not been instruction tuned and might not provide good answers outside of math domain.
62
-
63
- If you don't know how to use Llama3.1 models, we provide convenient [instructions in our repo](https://github.com/Kipok/NeMo-Skills/blob/main/docs/inference.md).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
 
65
  # Reproducing our results
66
 
 
35
  </style>
36
 
37
  <div class="image-container">
38
+ <img src="scaling_plot.jpg" title="Performance of Llama-3.1-8B-Instruct as it is trained on increasing proportions of OpenMathInstruct-2">
39
+ <img src="math_level_comp.jpg" title="Comparison of OpenMath2-Llama3.1-8B vs. Llama-3.1-8B-Instruct across MATH levels">
40
+ </div>
41
 
42
  | Model | GSM8K | MATH | AMC 2023 | AIME 2024 | Omni-MATH |
43
  |:---|:---:|:---:|:---:|:---:|:---:|
 
54
  - [Models](https://huggingface.co/collections/nvidia/openmath-2-66fb142317d86400783d2c7b)
55
  - [Dataset](https://huggingface.co/datasets/nvidia/OpenMathInstruct-2)
56
 
57
+ See our paper to learn more details!
58
 
59
  # How to use the models?
60
 
61
+ Our models are trained with the same "chat format" as Llama3.1-instruct models (same system/user/assistant tokens).
62
+ Please note that these models have not been instruction tuned on general data and thus might not provide good answers outside of math domain.
63
+
64
+ We recommend using [instructions in our repo](https://github.com/Kipok/NeMo-Skills/blob/main/docs/inference.md) to run inference with these models, but here is
65
+ an example of how to do it through transformers api:
66
+
67
+ ```python
68
+ import transformers
69
+ import torch
70
+
71
+ model_id = "nvidia/OpenMath2-Llama3.1-8B"
72
+
73
+ pipeline = transformers.pipeline(
74
+ "text-generation",
75
+ model=model_id,
76
+ model_kwargs={"torch_dtype": torch.bfloat16},
77
+ device_map="auto",
78
+ )
79
+
80
+ messages = [
81
+ {
82
+ "role": "user",
83
+ "content": "Solve the following math problem. Make sure to put the answer (and only answer) inside \\boxed{}.\n\n" +
84
+ "What is the minimum value of $a^2+6a-7$?"},
85
+ ]
86
+
87
+ outputs = pipeline(
88
+ messages,
89
+ max_new_tokens=4096,
90
+ )
91
+ print(outputs[0]["generated_text"][-1]['content'])
92
+ ```
93
 
94
  # Reproducing our results
95