|
|
|
""" |
|
This script is adapted from Qwen2.5-Math |
|
https://github.com/QwenLM/Qwen2.5-Math/blob/main/evaluation/grader.py |
|
""" |
|
|
|
import re |
|
import regex |
|
import multiprocessing |
|
from math import isclose |
|
from typing import Union |
|
from collections import defaultdict |
|
|
|
from sympy import simplify, N |
|
from sympy.parsing.sympy_parser import parse_expr |
|
from sympy.parsing.latex import parse_latex |
|
|
|
|
|
def latex2sympy(sympy: str, variable_values={}): |
|
|
|
global frac_type |
|
if sympy.find(r'\frac') != -1: |
|
frac_type = r'\frac' |
|
if sympy.find(r'\dfrac') != -1: |
|
frac_type = r'\dfrac' |
|
if sympy.find(r'\tfrac') != -1: |
|
frac_type = r'\tfrac' |
|
sympy = sympy.replace(r'\dfrac', r'\frac') |
|
sympy = sympy.replace(r'\tfrac', r'\frac') |
|
|
|
sympy = sympy.replace(r'\mathrm{T}', 'T', -1) |
|
|
|
sympy = sympy.replace(r'\mathrm{d}', 'd', -1).replace(r'{\rm d}', 'd', -1) |
|
|
|
sympy = sympy.replace(r'\left[\begin{matrix}', r'\begin{bmatrix}', -1).replace(r'\end{matrix}\right]', r'\end{bmatrix}', -1) |
|
|
|
sympy = re.sub(r"\(([a-zA-Z0-9+\-*/\\ ]+?)\)_{([a-zA-Z0-9+\-*/\\ ]+?)}", r"\\frac{(\1)!}{((\1)-(\2))!}", sympy) |
|
|
|
sympy = sympy.replace(r'\displaystyle', ' ', -1) |
|
|
|
sympy = sympy.replace(r'\quad', ' ', -1).replace(r'\qquad', ' ', -1).replace(r'~', ' ', -1).replace(r'\,', ' ', -1) |
|
|
|
sympy = sympy.replace(r'$', ' ', -1) |
|
|
|
|
|
global VARIABLE_VALUES |
|
if len(variable_values) > 0: |
|
VARIABLE_VALUES = variable_values |
|
else: |
|
VARIABLE_VALUES = {} |
|
|
|
|
|
matherror = MathErrorListener(sympy) |
|
|
|
|
|
stream = InputStream(sympy) |
|
lex = PSLexer(stream) |
|
lex.removeErrorListeners() |
|
lex.addErrorListener(matherror) |
|
|
|
tokens = CommonTokenStream(lex) |
|
parser = PSParser(tokens) |
|
|
|
|
|
parser.removeErrorListeners() |
|
parser.addErrorListener(matherror) |
|
|
|
|
|
return_data = None |
|
math = parser.math() |
|
|
|
|
|
if math.relation_list(): |
|
return_data = [] |
|
|
|
|
|
relation_list = math.relation_list().relation_list_content() |
|
for list_item in relation_list.relation(): |
|
expr = convert_relation(list_item) |
|
return_data.append(expr) |
|
|
|
|
|
else: |
|
relation = math.relation() |
|
return_data = convert_relation(relation) |
|
|
|
return return_data |
|
|
|
|
|
def math_answer_cleaning(answer, dataset_name): |
|
""" |
|
remove irrelevant strings and unify the answer format before checking whether the answers are equal |
|
""" |
|
def _is_completely_wrapped_by_text(input_string): |
|
pattern = r'^\\text{(.*)}$' |
|
match = re.match(pattern, input_string) |
|
if match: |
|
|
|
extracted_content = match.group(1) |
|
extracted_content = extracted_content.replace("(", "").replace(")", "").replace(",", "") |
|
return extracted_content |
|
else: |
|
return None |
|
|
|
|
|
extracted_content = _is_completely_wrapped_by_text(answer) |
|
answer = extracted_content if extracted_content else answer |
|
|
|
|
|
answer = answer.replace(",\!", "").replace("{,}", "").replace("\$", "") |
|
|
|
answer = answer.replace("dfrac{", "frac{").replace("tfrac{", "frac{") |
|
|
|
answer = answer.replace("^\circ", "") |
|
answer = answer.replace("^{\circ}", "") |
|
|
|
answer = answer.replace("\quad", "") |
|
|
|
answer = answer.replace(" ", "") |
|
|
|
answer = answer.replace("\n", "").replace("\\n", "") |
|
|
|
answer = re.sub(r'([+-]?\d*\.?\d+)[\\]times10\^{([+-]?\d+)}', r'\1e\2', answer) |
|
|
|
answer = re.sub(r'([+-]?\d*\.?\d+)[\\]times10\^([+-]?\d+)', r'\1e\2', answer) |
|
|
|
answer = re.sub(r'\\,\\text\{.*?\}', '', answer) |
|
|
|
answer = re.sub(r'\\text\{.*?\}', '', answer) |
|
|
|
answer = re.sub(r'(\d+)\^{(\d+)}', r'\1^\2', answer) |
|
|
|
answer = answer.lower() |
|
|
|
if dataset_name == "collegemath": |
|
|
|
answer = re.sub(r'\\mathrm\{.*?\}', '', answer) |
|
|
|
answer = re.sub(r'\$\([^)]*\)', '', answer) |
|
if answer.endswith("-"): |
|
answer = answer[:-1] |
|
if answer.endswith("."): |
|
answer = answer[:-1] |
|
if answer.endswith("hours"): |
|
answer = answer[:-len("hours")] |
|
|
|
if "=" in answer: |
|
answer = answer.split("=", 1)[1] |
|
if ":" in answer: |
|
answer = answer.split(":", 1)[1] |
|
|
|
answer = answer.replace("\\emptyset", "\\oslash") |
|
if dataset_name == "gsm8k": |
|
|
|
answer = answer.replace(',', '') |
|
if dataset_name == "gaokao2023en": |
|
unit_strings = ['students', 'dollars', 'boxes', 'feet', 'kilometers', 'meters', 'degreesontheBreadusscale', '$', 'a.m.', 'am', 'minutes'] |
|
for unit in unit_strings: |
|
answer = answer.replace(unit, "") |
|
|
|
return answer |
|
|
|
|
|
def extract_final_answer(output): |
|
pattern_re = re.compile(r"\\boxed\{((?:[^{}]|\{(?:[^{}]|\{[^{}]*\})*\})*)\}", re.DOTALL) |
|
all_matches = pattern_re.findall(output) |
|
|
|
if len(all_matches) >= 1: |
|
extracted_answer = all_matches[-1] |
|
else: |
|
extracted_answer = None |
|
|
|
return extracted_answer, all_matches |
|
|
|
|
|
def round_number(answer): |
|
def _is_float(string): |
|
try: |
|
float(string) |
|
return True |
|
except: |
|
return False |
|
|
|
if _is_float(answer) and float(answer) < 1: |
|
|
|
|
|
return f"{float(answer):.2g}" |
|
|
|
return answer |
|
|
|
|
|
def choice_answer_clean(pred: str): |
|
pred = pred.strip("\n").rstrip(".").rstrip("/").strip(" ").lstrip(":") |
|
|
|
tmp = re.findall(r"\b(A|B|C|D|E)\b", pred.upper()) |
|
if tmp: |
|
pred = tmp |
|
else: |
|
pred = [pred.strip().strip(".")] |
|
pred = pred[-1] |
|
|
|
pred = pred.rstrip(".").rstrip("/") |
|
return pred |
|
|
|
|
|
def parse_digits(num): |
|
num = regex.sub(",", "", str(num)) |
|
try: |
|
return float(num) |
|
except: |
|
if num.endswith("%"): |
|
num = num[:-1] |
|
if num.endswith("\\"): |
|
num = num[:-1] |
|
try: |
|
return float(num) / 100 |
|
except: |
|
pass |
|
return None |
|
|
|
|
|
def is_digit(num): |
|
|
|
return parse_digits(num) is not None |
|
|
|
|
|
def str_to_pmatrix(input_str): |
|
input_str = input_str.strip() |
|
matrix_str = re.findall(r"\{.*,.*\}", input_str) |
|
pmatrix_list = [] |
|
|
|
for m in matrix_str: |
|
m = m.strip("{}") |
|
pmatrix = r"\begin{pmatrix}" + m.replace(",", "\\") + r"\end{pmatrix}" |
|
pmatrix_list.append(pmatrix) |
|
|
|
return ", ".join(pmatrix_list) |
|
|
|
|
|
def math_equal( |
|
prediction: Union[bool, float, str], |
|
reference: Union[float, str], |
|
include_percentage: bool = True, |
|
is_close: bool = True, |
|
timeout: bool = False, |
|
) -> bool: |
|
""" |
|
Exact match of math if and only if: |
|
1. numerical equal: both can convert to float and are equal |
|
2. symbolic equal: both can convert to sympy expression and are equal |
|
""" |
|
if prediction is None or reference is None: |
|
return False |
|
if str(prediction.strip().lower()) == str(reference.strip().lower()): |
|
return True |
|
if ( |
|
reference in ["A", "B", "C", "D", "E"] |
|
and choice_answer_clean(prediction) == reference |
|
): |
|
return True |
|
|
|
|
|
if fraction_equal(prediction, reference): |
|
return True |
|
|
|
try: |
|
if round_number(prediction) == round_number(reference): |
|
return True |
|
if is_digit(prediction) and is_digit(reference): |
|
prediction = parse_digits(prediction) |
|
reference = parse_digits(reference) |
|
|
|
if include_percentage: |
|
gt_result = [reference / 100, reference, reference * 100] |
|
else: |
|
gt_result = [reference] |
|
for item in gt_result: |
|
try: |
|
if is_close: |
|
if numeric_equal(prediction, item): |
|
return True |
|
else: |
|
if item == prediction: |
|
return True |
|
except Exception: |
|
continue |
|
return False |
|
except: |
|
pass |
|
|
|
if not prediction and prediction not in [0, False]: |
|
return False |
|
|
|
|
|
reference = str(reference).strip() |
|
prediction = str(prediction).strip() |
|
|
|
|
|
if "pmatrix" in prediction and not "pmatrix" in reference: |
|
reference = str_to_pmatrix(reference) |
|
|
|
|
|
pred_str, ref_str = prediction, reference |
|
if ( |
|
prediction.startswith("[") |
|
and prediction.endswith("]") |
|
and not reference.startswith("(") |
|
) or ( |
|
prediction.startswith("(") |
|
and prediction.endswith(")") |
|
and not reference.startswith("[") |
|
): |
|
pred_str = pred_str.strip("[]()") |
|
ref_str = ref_str.strip("[]()") |
|
for s in ["{", "}", "(", ")"]: |
|
ref_str = ref_str.replace(s, "") |
|
pred_str = pred_str.replace(s, "") |
|
if pred_str.lower() == ref_str.lower(): |
|
return True |
|
|
|
|
|
if ( |
|
regex.match(r"(\(|\[).+(\)|\])", prediction) is not None |
|
and regex.match(r"(\(|\[).+(\)|\])", reference) is not None |
|
): |
|
pred_parts = prediction[1:-1].split(",") |
|
ref_parts = reference[1:-1].split(",") |
|
if len(pred_parts) == len(ref_parts): |
|
if all( |
|
[ |
|
math_equal( |
|
pred_parts[i], ref_parts[i], include_percentage, is_close |
|
) |
|
for i in range(len(pred_parts)) |
|
] |
|
): |
|
return True |
|
if ( |
|
( |
|
prediction.startswith("\\begin{pmatrix}") |
|
or prediction.startswith("\\begin{bmatrix}") |
|
) |
|
and ( |
|
prediction.endswith("\\end{pmatrix}") |
|
or prediction.endswith("\\end{bmatrix}") |
|
) |
|
and ( |
|
reference.startswith("\\begin{pmatrix}") |
|
or reference.startswith("\\begin{bmatrix}") |
|
) |
|
and ( |
|
reference.endswith("\\end{pmatrix}") or reference.endswith("\\end{bmatrix}") |
|
) |
|
): |
|
pred_lines = [ |
|
line.strip() |
|
for line in prediction[ |
|
len("\\begin{pmatrix}") : -len("\\end{pmatrix}") |
|
].split("\\\\") |
|
if line.strip() |
|
] |
|
ref_lines = [ |
|
line.strip() |
|
for line in reference[ |
|
len("\\begin{pmatrix}") : -len("\\end{pmatrix}") |
|
].split("\\\\") |
|
if line.strip() |
|
] |
|
matched = True |
|
if len(pred_lines) == len(ref_lines): |
|
for pred_line, ref_line in zip(pred_lines, ref_lines): |
|
pred_parts = pred_line.split("&") |
|
ref_parts = ref_line.split("&") |
|
if len(pred_parts) == len(ref_parts): |
|
if not all( |
|
[ |
|
math_equal( |
|
pred_parts[i], |
|
ref_parts[i], |
|
include_percentage, |
|
is_close, |
|
) |
|
for i in range(len(pred_parts)) |
|
] |
|
): |
|
matched = False |
|
break |
|
else: |
|
matched = False |
|
if not matched: |
|
break |
|
else: |
|
matched = False |
|
if matched: |
|
return True |
|
|
|
if prediction.count("=") == 1 and reference.count("=") == 1: |
|
pred = prediction.split("=") |
|
pred = f"{pred[0].strip()} - ({pred[1].strip()})" |
|
ref = reference.split("=") |
|
ref = f"{ref[0].strip()} - ({ref[1].strip()})" |
|
if symbolic_equal(pred, ref) or symbolic_equal(f"-({pred})", ref): |
|
return True |
|
elif ( |
|
prediction.count("=") == 1 |
|
and len(prediction.split("=")[0].strip()) <= 2 |
|
and "=" not in reference |
|
): |
|
if math_equal( |
|
prediction.split("=")[1], reference, include_percentage, is_close |
|
): |
|
return True |
|
elif ( |
|
reference.count("=") == 1 |
|
and len(reference.split("=")[0].strip()) <= 2 |
|
and "=" not in prediction |
|
): |
|
if math_equal( |
|
prediction, reference.split("=")[1], include_percentage, is_close |
|
): |
|
return True |
|
|
|
|
|
if timeout: |
|
if call_with_timeout(symbolic_equal_process, prediction, reference): |
|
return True |
|
else: |
|
if symbolic_equal(prediction, reference): |
|
return True |
|
|
|
return False |
|
|
|
|
|
def numeric_equal(prediction: float, reference: float): |
|
|
|
|
|
|
|
|
|
|
|
|
|
return isclose(reference, prediction, rel_tol=1e-4) |
|
|
|
|
|
def fraction_equal(prediction, reference): |
|
def _calculate_numbers(input_string): |
|
try: |
|
result = eval(input_string) |
|
return result |
|
except: |
|
return None |
|
|
|
reference = re.sub(r'\\frac{(.*?)}{(.*?)}', r'(\1/\2)', reference) |
|
prediction = re.sub(r'\\frac{(.*?)}{(.*?)}', r'(\1/\2)', prediction) |
|
|
|
if reference == prediction: |
|
return True |
|
|
|
reference = _calculate_numbers(reference) |
|
prediction = _calculate_numbers(prediction) |
|
|
|
if reference and reference == prediction: |
|
return True |
|
|
|
return False |
|
|
|
def symbolic_equal(a, b): |
|
def _parse(s): |
|
for f in [parse_latex, parse_expr, latex2sympy]: |
|
try: |
|
return f(s.replace("\\\\", "\\")) |
|
except: |
|
try: |
|
return f(s) |
|
except: |
|
pass |
|
return s |
|
|
|
a = _parse(a) |
|
b = _parse(b) |
|
|
|
|
|
try: |
|
if str(a) == str(b) or a == b: |
|
return True |
|
except: |
|
pass |
|
|
|
|
|
try: |
|
if a.equals(b) or simplify(a - b) == 0: |
|
return True |
|
except: |
|
pass |
|
|
|
|
|
try: |
|
if (abs(a.lhs - a.rhs)).equals(abs(b.lhs - b.rhs)): |
|
return True |
|
except: |
|
pass |
|
|
|
try: |
|
if numeric_equal(float(N(a)), float(N(b))): |
|
return True |
|
except: |
|
pass |
|
|
|
|
|
try: |
|
|
|
if a.shape == b.shape: |
|
_a = a.applyfunc(lambda x: round(x, 3)) |
|
_b = b.applyfunc(lambda x: round(x, 3)) |
|
if _a.equals(_b): |
|
return True |
|
except: |
|
pass |
|
|
|
return False |
|
|
|
|
|
def symbolic_equal_process(a, b, output_queue): |
|
result = symbolic_equal(a, b) |
|
output_queue.put(result) |
|
|
|
|
|
def math_equal_process(prediction, reference, output_queue): |
|
result = math_equal(prediction, reference, timeout=True) |
|
output_queue.put(result) |
|
|
|
|
|
def call_with_timeout(func, *args, timeout=1, **kwargs): |
|
output_queue = multiprocessing.Queue() |
|
process_args = args + (output_queue,) |
|
process = multiprocessing.Process(target=func, args=process_args, kwargs=kwargs) |
|
process.start() |
|
process.join(timeout) |
|
|
|
if process.is_alive(): |
|
process.terminate() |
|
process.join() |
|
return False |
|
|
|
return output_queue.get() |
|
|
|
|
|
def check_correctness_of_multiple_answer_cases(prediction, reference, all_matches): |
|
|
|
if prediction.replace(",", "").replace("$", "") == reference.replace(",", "").replace("$", ""): |
|
return True |
|
|
|
if not prediction.split("=")[-1] == reference.split("=")[-1].replace("$", ""): |
|
return False |
|
|
|
if "," in reference or "or" in reference or "and" in reference: |
|
|
|
if len(all_matches) <= 1: |
|
return False |
|
|
|
prediction1 = prediction.split("=")[-1] |
|
prediction2 = all_matches[-2].split("=")[-1] |
|
reference = reference.replace("$", "") |
|
if "or" in reference: |
|
gold_list = reference.split("or", 1) |
|
elif "and" in reference: |
|
gold_list = reference.split("and", 1) |
|
else: |
|
gold_list = reference.split(",", 1) |
|
|
|
reference1 = gold_list[-1].split("=")[-1] |
|
reference2 = gold_list[-2].split("=")[-1] |
|
|
|
if math_equal(prediction1, reference1) and math_equal(prediction2, reference2): |
|
return True |
|
elif math_equal(prediction2, reference1) and math_equal(prediction1, reference2): |
|
return True |
|
|
|
return False |
|
|
|
else: |
|
return True |
|
|
|
|
|
def is_equal(model_output, reference, dataset_name): |
|
|
|
extracted_model_answer, all_matches = extract_final_answer(model_output) |
|
if extracted_model_answer is None or reference is None: |
|
return False |
|
|
|
extracted_model_answer = math_answer_cleaning(extracted_model_answer, dataset_name) |
|
reference = math_answer_cleaning(reference, dataset_name) |
|
|
|
|
|
if call_with_timeout(math_equal_process, extracted_model_answer, reference): |
|
return True |
|
|
|
if dataset_name == "collegemath": |
|
return check_correctness_of_multiple_answer_cases(extracted_model_answer, reference, all_matches) |
|
|
|
return False |
|
|