zihanliu's picture
Upload 3 files
94f14e9 verified
raw
history blame
18.7 kB
"""
This script is adapted from Qwen2.5-Math
https://github.com/QwenLM/Qwen2.5-Math/blob/main/evaluation/grader.py
"""
import re
import regex
import multiprocessing
from math import isclose
from typing import Union
from collections import defaultdict
from sympy import simplify, N
from sympy.parsing.sympy_parser import parse_expr
from sympy.parsing.latex import parse_latex
def latex2sympy(sympy: str, variable_values={}):
# record frac
global frac_type
if sympy.find(r'\frac') != -1:
frac_type = r'\frac'
if sympy.find(r'\dfrac') != -1:
frac_type = r'\dfrac'
if sympy.find(r'\tfrac') != -1:
frac_type = r'\tfrac'
sympy = sympy.replace(r'\dfrac', r'\frac')
sympy = sympy.replace(r'\tfrac', r'\frac')
# Translate Transpose
sympy = sympy.replace(r'\mathrm{T}', 'T', -1)
# Translate Derivative
sympy = sympy.replace(r'\mathrm{d}', 'd', -1).replace(r'{\rm d}', 'd', -1)
# Translate Matrix
sympy = sympy.replace(r'\left[\begin{matrix}', r'\begin{bmatrix}', -1).replace(r'\end{matrix}\right]', r'\end{bmatrix}', -1)
# Translate Permutation
sympy = re.sub(r"\(([a-zA-Z0-9+\-*/\\ ]+?)\)_{([a-zA-Z0-9+\-*/\\ ]+?)}", r"\\frac{(\1)!}{((\1)-(\2))!}", sympy)
# Remove \displaystyle
sympy = sympy.replace(r'\displaystyle', ' ', -1)
# Remove \quad
sympy = sympy.replace(r'\quad', ' ', -1).replace(r'\qquad', ' ', -1).replace(r'~', ' ', -1).replace(r'\,', ' ', -1)
# Remove $
sympy = sympy.replace(r'$', ' ', -1)
# variable values
global VARIABLE_VALUES
if len(variable_values) > 0:
VARIABLE_VALUES = variable_values
else:
VARIABLE_VALUES = {}
# setup listener
matherror = MathErrorListener(sympy)
# stream input
stream = InputStream(sympy)
lex = PSLexer(stream)
lex.removeErrorListeners()
lex.addErrorListener(matherror)
tokens = CommonTokenStream(lex)
parser = PSParser(tokens)
# remove default console error listener
parser.removeErrorListeners()
parser.addErrorListener(matherror)
# process the input
return_data = None
math = parser.math()
# if a list
if math.relation_list():
return_data = []
# go over list items
relation_list = math.relation_list().relation_list_content()
for list_item in relation_list.relation():
expr = convert_relation(list_item)
return_data.append(expr)
# if not, do default
else:
relation = math.relation()
return_data = convert_relation(relation)
return return_data
def math_answer_cleaning(answer, dataset_name):
"""
remove irrelevant strings and unify the answer format before checking whether the answers are equal
"""
def _is_completely_wrapped_by_text(input_string):
pattern = r'^\\text{(.*)}$'
match = re.match(pattern, input_string)
if match:
## input_string is completely wrapped by \text{}
extracted_content = match.group(1)
extracted_content = extracted_content.replace("(", "").replace(")", "").replace(",", "")
return extracted_content
else:
return None
## remove irrelevant \\text and space
extracted_content = _is_completely_wrapped_by_text(answer)
answer = extracted_content if extracted_content else answer
## e.g., convert 5,\!460 into 5460; convert 14{,}916 into 14916 convert \$4 into 4
answer = answer.replace(",\!", "").replace("{,}", "").replace("\$", "")
## e.g., convert \dfrac{3}{2} into frac{3}{2}
answer = answer.replace("dfrac{", "frac{").replace("tfrac{", "frac{")
## e.g., convert 121^\circ into 121
answer = answer.replace("^\circ", "")
answer = answer.replace("^{\circ}", "")
## remove \quad
answer = answer.replace("\quad", "")
## remove space
answer = answer.replace(" ", "")
## remove \n
answer = answer.replace("\n", "").replace("\\n", "")
## e.g., convert 3.54\times10^{10} into 3.54e10
answer = re.sub(r'([+-]?\d*\.?\d+)[\\]times10\^{([+-]?\d+)}', r'\1e\2', answer)
## e.g., convert 3.54\times10^10 into 3.54e10
answer = re.sub(r'([+-]?\d*\.?\d+)[\\]times10\^([+-]?\d+)', r'\1e\2', answer)
## e.g., convert 558\,\text{nm} into 558
answer = re.sub(r'\\,\\text\{.*?\}', '', answer)
## e.g., convert 558\text{nm} into 558
answer = re.sub(r'\\text\{.*?\}', '', answer)
## e.g., convert 2^{10} into 2^10
answer = re.sub(r'(\d+)\^{(\d+)}', r'\1^\2', answer)
## lowercase
answer = answer.lower()
if dataset_name == "collegemath":
## convert 558\mathrm{ft} into 558
answer = re.sub(r'\\mathrm\{.*?\}', '', answer)
## clean noisy answer
answer = re.sub(r'\$\([^)]*\)', '', answer)
if answer.endswith("-"):
answer = answer[:-1]
if answer.endswith("."):
answer = answer[:-1]
if answer.endswith("hours"):
answer = answer[:-len("hours")]
## extract final answer after '=' or ':'
if "=" in answer:
answer = answer.split("=", 1)[1]
if ":" in answer:
answer = answer.split(":", 1)[1]
## \emptyset and \oslash both reprsent empty set in latex
answer = answer.replace("\\emptyset", "\\oslash")
if dataset_name == "gsm8k":
# Example: 5,600 -> 5600
answer = answer.replace(',', '')
if dataset_name == "gaokao2023en":
unit_strings = ['students', 'dollars', 'boxes', 'feet', 'kilometers', 'meters', 'degreesontheBreadusscale', '$', 'a.m.', 'am', 'minutes']
for unit in unit_strings:
answer = answer.replace(unit, "")
return answer
def extract_final_answer(output):
pattern_re = re.compile(r"\\boxed\{((?:[^{}]|\{(?:[^{}]|\{[^{}]*\})*\})*)\}", re.DOTALL)
all_matches = pattern_re.findall(output)
if len(all_matches) >= 1:
extracted_answer = all_matches[-1]
else:
extracted_answer = None
return extracted_answer, all_matches
def round_number(answer):
def _is_float(string):
try:
float(string)
return True
except:
return False
if _is_float(answer) and float(answer) < 1:
## to consider the case like 5.56e-10 (convert 5.56e-10 into 5.6e-10)
## still return a string type
return f"{float(answer):.2g}"
return answer
def choice_answer_clean(pred: str):
pred = pred.strip("\n").rstrip(".").rstrip("/").strip(" ").lstrip(":")
# Clean the answer based on the dataset
tmp = re.findall(r"\b(A|B|C|D|E)\b", pred.upper())
if tmp:
pred = tmp
else:
pred = [pred.strip().strip(".")]
pred = pred[-1]
# Remove the period at the end, again!
pred = pred.rstrip(".").rstrip("/")
return pred
def parse_digits(num):
num = regex.sub(",", "", str(num))
try:
return float(num)
except:
if num.endswith("%"):
num = num[:-1]
if num.endswith("\\"):
num = num[:-1]
try:
return float(num) / 100
except:
pass
return None
def is_digit(num):
# paired with parse_digits
return parse_digits(num) is not None
def str_to_pmatrix(input_str):
input_str = input_str.strip()
matrix_str = re.findall(r"\{.*,.*\}", input_str)
pmatrix_list = []
for m in matrix_str:
m = m.strip("{}")
pmatrix = r"\begin{pmatrix}" + m.replace(",", "\\") + r"\end{pmatrix}"
pmatrix_list.append(pmatrix)
return ", ".join(pmatrix_list)
def math_equal(
prediction: Union[bool, float, str],
reference: Union[float, str],
include_percentage: bool = True,
is_close: bool = True,
timeout: bool = False,
) -> bool:
"""
Exact match of math if and only if:
1. numerical equal: both can convert to float and are equal
2. symbolic equal: both can convert to sympy expression and are equal
"""
if prediction is None or reference is None:
return False
if str(prediction.strip().lower()) == str(reference.strip().lower()):
return True
if (
reference in ["A", "B", "C", "D", "E"]
and choice_answer_clean(prediction) == reference
):
return True
# fraction equal
if fraction_equal(prediction, reference):
return True
try: # numerical equal
if round_number(prediction) == round_number(reference):
return True
if is_digit(prediction) and is_digit(reference):
prediction = parse_digits(prediction)
reference = parse_digits(reference)
# number questions
if include_percentage:
gt_result = [reference / 100, reference, reference * 100]
else:
gt_result = [reference]
for item in gt_result:
try:
if is_close:
if numeric_equal(prediction, item):
return True
else:
if item == prediction:
return True
except Exception:
continue
return False
except:
pass
if not prediction and prediction not in [0, False]:
return False
# symbolic equal
reference = str(reference).strip()
prediction = str(prediction).strip()
## pmatrix (amps)
if "pmatrix" in prediction and not "pmatrix" in reference:
reference = str_to_pmatrix(reference)
## deal with [], (), {}
pred_str, ref_str = prediction, reference
if (
prediction.startswith("[")
and prediction.endswith("]")
and not reference.startswith("(")
) or (
prediction.startswith("(")
and prediction.endswith(")")
and not reference.startswith("[")
):
pred_str = pred_str.strip("[]()")
ref_str = ref_str.strip("[]()")
for s in ["{", "}", "(", ")"]:
ref_str = ref_str.replace(s, "")
pred_str = pred_str.replace(s, "")
if pred_str.lower() == ref_str.lower():
return True
## [a, b] vs. [c, d], return a==c and b==d
if (
regex.match(r"(\(|\[).+(\)|\])", prediction) is not None
and regex.match(r"(\(|\[).+(\)|\])", reference) is not None
):
pred_parts = prediction[1:-1].split(",")
ref_parts = reference[1:-1].split(",")
if len(pred_parts) == len(ref_parts):
if all(
[
math_equal(
pred_parts[i], ref_parts[i], include_percentage, is_close
)
for i in range(len(pred_parts))
]
):
return True
if (
(
prediction.startswith("\\begin{pmatrix}")
or prediction.startswith("\\begin{bmatrix}")
)
and (
prediction.endswith("\\end{pmatrix}")
or prediction.endswith("\\end{bmatrix}")
)
and (
reference.startswith("\\begin{pmatrix}")
or reference.startswith("\\begin{bmatrix}")
)
and (
reference.endswith("\\end{pmatrix}") or reference.endswith("\\end{bmatrix}")
)
):
pred_lines = [
line.strip()
for line in prediction[
len("\\begin{pmatrix}") : -len("\\end{pmatrix}")
].split("\\\\")
if line.strip()
]
ref_lines = [
line.strip()
for line in reference[
len("\\begin{pmatrix}") : -len("\\end{pmatrix}")
].split("\\\\")
if line.strip()
]
matched = True
if len(pred_lines) == len(ref_lines):
for pred_line, ref_line in zip(pred_lines, ref_lines):
pred_parts = pred_line.split("&")
ref_parts = ref_line.split("&")
if len(pred_parts) == len(ref_parts):
if not all(
[
math_equal(
pred_parts[i],
ref_parts[i],
include_percentage,
is_close,
)
for i in range(len(pred_parts))
]
):
matched = False
break
else:
matched = False
if not matched:
break
else:
matched = False
if matched:
return True
if prediction.count("=") == 1 and reference.count("=") == 1:
pred = prediction.split("=")
pred = f"{pred[0].strip()} - ({pred[1].strip()})"
ref = reference.split("=")
ref = f"{ref[0].strip()} - ({ref[1].strip()})"
if symbolic_equal(pred, ref) or symbolic_equal(f"-({pred})", ref):
return True
elif (
prediction.count("=") == 1
and len(prediction.split("=")[0].strip()) <= 2
and "=" not in reference
):
if math_equal(
prediction.split("=")[1], reference, include_percentage, is_close
):
return True
elif (
reference.count("=") == 1
and len(reference.split("=")[0].strip()) <= 2
and "=" not in prediction
):
if math_equal(
prediction, reference.split("=")[1], include_percentage, is_close
):
return True
# symbolic equal with sympy
if timeout:
if call_with_timeout(symbolic_equal_process, prediction, reference):
return True
else:
if symbolic_equal(prediction, reference):
return True
return False
def numeric_equal(prediction: float, reference: float):
# Note that relative tolerance has significant impact
# on the result of the synthesized GSM-Hard dataset
# if reference.is_integer():
# return isclose(reference, round(prediction), abs_tol=1e-4)
# else:
# prediction = round(prediction, len(str(reference).split(".")[-1]))
return isclose(reference, prediction, rel_tol=1e-4)
def fraction_equal(prediction, reference):
def _calculate_numbers(input_string):
try:
result = eval(input_string)
return result
except:
return None
reference = re.sub(r'\\frac{(.*?)}{(.*?)}', r'(\1/\2)', reference)
prediction = re.sub(r'\\frac{(.*?)}{(.*?)}', r'(\1/\2)', prediction)
if reference == prediction:
return True
reference = _calculate_numbers(reference)
prediction = _calculate_numbers(prediction)
if reference and reference == prediction:
return True
return False
def symbolic_equal(a, b):
def _parse(s):
for f in [parse_latex, parse_expr, latex2sympy]:
try:
return f(s.replace("\\\\", "\\"))
except:
try:
return f(s)
except:
pass
return s
a = _parse(a)
b = _parse(b)
# direct equal
try:
if str(a) == str(b) or a == b:
return True
except:
pass
# simplify equal
try:
if a.equals(b) or simplify(a - b) == 0:
return True
except:
pass
# equation equal
try:
if (abs(a.lhs - a.rhs)).equals(abs(b.lhs - b.rhs)):
return True
except:
pass
try:
if numeric_equal(float(N(a)), float(N(b))):
return True
except:
pass
# matrix
try:
# if a and b are matrix
if a.shape == b.shape:
_a = a.applyfunc(lambda x: round(x, 3))
_b = b.applyfunc(lambda x: round(x, 3))
if _a.equals(_b):
return True
except:
pass
return False
def symbolic_equal_process(a, b, output_queue):
result = symbolic_equal(a, b)
output_queue.put(result)
def math_equal_process(prediction, reference, output_queue):
result = math_equal(prediction, reference, timeout=True)
output_queue.put(result)
def call_with_timeout(func, *args, timeout=1, **kwargs):
output_queue = multiprocessing.Queue()
process_args = args + (output_queue,)
process = multiprocessing.Process(target=func, args=process_args, kwargs=kwargs)
process.start()
process.join(timeout)
if process.is_alive():
process.terminate()
process.join()
return False
return output_queue.get()
def check_correctness_of_multiple_answer_cases(prediction, reference, all_matches):
if prediction.replace(",", "").replace("$", "") == reference.replace(",", "").replace("$", ""):
return True
if not prediction.split("=")[-1] == reference.split("=")[-1].replace("$", ""):
return False
if "," in reference or "or" in reference or "and" in reference:
## there are multiple answers
if len(all_matches) <= 1:
return False
prediction1 = prediction.split("=")[-1]
prediction2 = all_matches[-2].split("=")[-1]
reference = reference.replace("$", "")
if "or" in reference:
gold_list = reference.split("or", 1)
elif "and" in reference:
gold_list = reference.split("and", 1)
else:
gold_list = reference.split(",", 1)
reference1 = gold_list[-1].split("=")[-1]
reference2 = gold_list[-2].split("=")[-1]
if math_equal(prediction1, reference1) and math_equal(prediction2, reference2):
return True
elif math_equal(prediction2, reference1) and math_equal(prediction1, reference2):
return True
return False
else:
return True
def is_equal(model_output, reference, dataset_name):
extracted_model_answer, all_matches = extract_final_answer(model_output)
if extracted_model_answer is None or reference is None:
return False
extracted_model_answer = math_answer_cleaning(extracted_model_answer, dataset_name)
reference = math_answer_cleaning(reference, dataset_name)
# if math_equal(prediction, reference, timeout=True):
if call_with_timeout(math_equal_process, extracted_model_answer, reference):
return True
if dataset_name == "collegemath":
return check_correctness_of_multiple_answer_cases(extracted_model_answer, reference, all_matches)
return False