File size: 18,691 Bytes
94f14e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 |
"""
This script is adapted from Qwen2.5-Math
https://github.com/QwenLM/Qwen2.5-Math/blob/main/evaluation/grader.py
"""
import re
import regex
import multiprocessing
from math import isclose
from typing import Union
from collections import defaultdict
from sympy import simplify, N
from sympy.parsing.sympy_parser import parse_expr
from sympy.parsing.latex import parse_latex
def latex2sympy(sympy: str, variable_values={}):
# record frac
global frac_type
if sympy.find(r'\frac') != -1:
frac_type = r'\frac'
if sympy.find(r'\dfrac') != -1:
frac_type = r'\dfrac'
if sympy.find(r'\tfrac') != -1:
frac_type = r'\tfrac'
sympy = sympy.replace(r'\dfrac', r'\frac')
sympy = sympy.replace(r'\tfrac', r'\frac')
# Translate Transpose
sympy = sympy.replace(r'\mathrm{T}', 'T', -1)
# Translate Derivative
sympy = sympy.replace(r'\mathrm{d}', 'd', -1).replace(r'{\rm d}', 'd', -1)
# Translate Matrix
sympy = sympy.replace(r'\left[\begin{matrix}', r'\begin{bmatrix}', -1).replace(r'\end{matrix}\right]', r'\end{bmatrix}', -1)
# Translate Permutation
sympy = re.sub(r"\(([a-zA-Z0-9+\-*/\\ ]+?)\)_{([a-zA-Z0-9+\-*/\\ ]+?)}", r"\\frac{(\1)!}{((\1)-(\2))!}", sympy)
# Remove \displaystyle
sympy = sympy.replace(r'\displaystyle', ' ', -1)
# Remove \quad
sympy = sympy.replace(r'\quad', ' ', -1).replace(r'\qquad', ' ', -1).replace(r'~', ' ', -1).replace(r'\,', ' ', -1)
# Remove $
sympy = sympy.replace(r'$', ' ', -1)
# variable values
global VARIABLE_VALUES
if len(variable_values) > 0:
VARIABLE_VALUES = variable_values
else:
VARIABLE_VALUES = {}
# setup listener
matherror = MathErrorListener(sympy)
# stream input
stream = InputStream(sympy)
lex = PSLexer(stream)
lex.removeErrorListeners()
lex.addErrorListener(matherror)
tokens = CommonTokenStream(lex)
parser = PSParser(tokens)
# remove default console error listener
parser.removeErrorListeners()
parser.addErrorListener(matherror)
# process the input
return_data = None
math = parser.math()
# if a list
if math.relation_list():
return_data = []
# go over list items
relation_list = math.relation_list().relation_list_content()
for list_item in relation_list.relation():
expr = convert_relation(list_item)
return_data.append(expr)
# if not, do default
else:
relation = math.relation()
return_data = convert_relation(relation)
return return_data
def math_answer_cleaning(answer, dataset_name):
"""
remove irrelevant strings and unify the answer format before checking whether the answers are equal
"""
def _is_completely_wrapped_by_text(input_string):
pattern = r'^\\text{(.*)}$'
match = re.match(pattern, input_string)
if match:
## input_string is completely wrapped by \text{}
extracted_content = match.group(1)
extracted_content = extracted_content.replace("(", "").replace(")", "").replace(",", "")
return extracted_content
else:
return None
## remove irrelevant \\text and space
extracted_content = _is_completely_wrapped_by_text(answer)
answer = extracted_content if extracted_content else answer
## e.g., convert 5,\!460 into 5460; convert 14{,}916 into 14916 convert \$4 into 4
answer = answer.replace(",\!", "").replace("{,}", "").replace("\$", "")
## e.g., convert \dfrac{3}{2} into frac{3}{2}
answer = answer.replace("dfrac{", "frac{").replace("tfrac{", "frac{")
## e.g., convert 121^\circ into 121
answer = answer.replace("^\circ", "")
answer = answer.replace("^{\circ}", "")
## remove \quad
answer = answer.replace("\quad", "")
## remove space
answer = answer.replace(" ", "")
## remove \n
answer = answer.replace("\n", "").replace("\\n", "")
## e.g., convert 3.54\times10^{10} into 3.54e10
answer = re.sub(r'([+-]?\d*\.?\d+)[\\]times10\^{([+-]?\d+)}', r'\1e\2', answer)
## e.g., convert 3.54\times10^10 into 3.54e10
answer = re.sub(r'([+-]?\d*\.?\d+)[\\]times10\^([+-]?\d+)', r'\1e\2', answer)
## e.g., convert 558\,\text{nm} into 558
answer = re.sub(r'\\,\\text\{.*?\}', '', answer)
## e.g., convert 558\text{nm} into 558
answer = re.sub(r'\\text\{.*?\}', '', answer)
## e.g., convert 2^{10} into 2^10
answer = re.sub(r'(\d+)\^{(\d+)}', r'\1^\2', answer)
## lowercase
answer = answer.lower()
if dataset_name == "collegemath":
## convert 558\mathrm{ft} into 558
answer = re.sub(r'\\mathrm\{.*?\}', '', answer)
## clean noisy answer
answer = re.sub(r'\$\([^)]*\)', '', answer)
if answer.endswith("-"):
answer = answer[:-1]
if answer.endswith("."):
answer = answer[:-1]
if answer.endswith("hours"):
answer = answer[:-len("hours")]
## extract final answer after '=' or ':'
if "=" in answer:
answer = answer.split("=", 1)[1]
if ":" in answer:
answer = answer.split(":", 1)[1]
## \emptyset and \oslash both reprsent empty set in latex
answer = answer.replace("\\emptyset", "\\oslash")
if dataset_name == "gsm8k":
# Example: 5,600 -> 5600
answer = answer.replace(',', '')
if dataset_name == "gaokao2023en":
unit_strings = ['students', 'dollars', 'boxes', 'feet', 'kilometers', 'meters', 'degreesontheBreadusscale', '$', 'a.m.', 'am', 'minutes']
for unit in unit_strings:
answer = answer.replace(unit, "")
return answer
def extract_final_answer(output):
pattern_re = re.compile(r"\\boxed\{((?:[^{}]|\{(?:[^{}]|\{[^{}]*\})*\})*)\}", re.DOTALL)
all_matches = pattern_re.findall(output)
if len(all_matches) >= 1:
extracted_answer = all_matches[-1]
else:
extracted_answer = None
return extracted_answer, all_matches
def round_number(answer):
def _is_float(string):
try:
float(string)
return True
except:
return False
if _is_float(answer) and float(answer) < 1:
## to consider the case like 5.56e-10 (convert 5.56e-10 into 5.6e-10)
## still return a string type
return f"{float(answer):.2g}"
return answer
def choice_answer_clean(pred: str):
pred = pred.strip("\n").rstrip(".").rstrip("/").strip(" ").lstrip(":")
# Clean the answer based on the dataset
tmp = re.findall(r"\b(A|B|C|D|E)\b", pred.upper())
if tmp:
pred = tmp
else:
pred = [pred.strip().strip(".")]
pred = pred[-1]
# Remove the period at the end, again!
pred = pred.rstrip(".").rstrip("/")
return pred
def parse_digits(num):
num = regex.sub(",", "", str(num))
try:
return float(num)
except:
if num.endswith("%"):
num = num[:-1]
if num.endswith("\\"):
num = num[:-1]
try:
return float(num) / 100
except:
pass
return None
def is_digit(num):
# paired with parse_digits
return parse_digits(num) is not None
def str_to_pmatrix(input_str):
input_str = input_str.strip()
matrix_str = re.findall(r"\{.*,.*\}", input_str)
pmatrix_list = []
for m in matrix_str:
m = m.strip("{}")
pmatrix = r"\begin{pmatrix}" + m.replace(",", "\\") + r"\end{pmatrix}"
pmatrix_list.append(pmatrix)
return ", ".join(pmatrix_list)
def math_equal(
prediction: Union[bool, float, str],
reference: Union[float, str],
include_percentage: bool = True,
is_close: bool = True,
timeout: bool = False,
) -> bool:
"""
Exact match of math if and only if:
1. numerical equal: both can convert to float and are equal
2. symbolic equal: both can convert to sympy expression and are equal
"""
if prediction is None or reference is None:
return False
if str(prediction.strip().lower()) == str(reference.strip().lower()):
return True
if (
reference in ["A", "B", "C", "D", "E"]
and choice_answer_clean(prediction) == reference
):
return True
# fraction equal
if fraction_equal(prediction, reference):
return True
try: # numerical equal
if round_number(prediction) == round_number(reference):
return True
if is_digit(prediction) and is_digit(reference):
prediction = parse_digits(prediction)
reference = parse_digits(reference)
# number questions
if include_percentage:
gt_result = [reference / 100, reference, reference * 100]
else:
gt_result = [reference]
for item in gt_result:
try:
if is_close:
if numeric_equal(prediction, item):
return True
else:
if item == prediction:
return True
except Exception:
continue
return False
except:
pass
if not prediction and prediction not in [0, False]:
return False
# symbolic equal
reference = str(reference).strip()
prediction = str(prediction).strip()
## pmatrix (amps)
if "pmatrix" in prediction and not "pmatrix" in reference:
reference = str_to_pmatrix(reference)
## deal with [], (), {}
pred_str, ref_str = prediction, reference
if (
prediction.startswith("[")
and prediction.endswith("]")
and not reference.startswith("(")
) or (
prediction.startswith("(")
and prediction.endswith(")")
and not reference.startswith("[")
):
pred_str = pred_str.strip("[]()")
ref_str = ref_str.strip("[]()")
for s in ["{", "}", "(", ")"]:
ref_str = ref_str.replace(s, "")
pred_str = pred_str.replace(s, "")
if pred_str.lower() == ref_str.lower():
return True
## [a, b] vs. [c, d], return a==c and b==d
if (
regex.match(r"(\(|\[).+(\)|\])", prediction) is not None
and regex.match(r"(\(|\[).+(\)|\])", reference) is not None
):
pred_parts = prediction[1:-1].split(",")
ref_parts = reference[1:-1].split(",")
if len(pred_parts) == len(ref_parts):
if all(
[
math_equal(
pred_parts[i], ref_parts[i], include_percentage, is_close
)
for i in range(len(pred_parts))
]
):
return True
if (
(
prediction.startswith("\\begin{pmatrix}")
or prediction.startswith("\\begin{bmatrix}")
)
and (
prediction.endswith("\\end{pmatrix}")
or prediction.endswith("\\end{bmatrix}")
)
and (
reference.startswith("\\begin{pmatrix}")
or reference.startswith("\\begin{bmatrix}")
)
and (
reference.endswith("\\end{pmatrix}") or reference.endswith("\\end{bmatrix}")
)
):
pred_lines = [
line.strip()
for line in prediction[
len("\\begin{pmatrix}") : -len("\\end{pmatrix}")
].split("\\\\")
if line.strip()
]
ref_lines = [
line.strip()
for line in reference[
len("\\begin{pmatrix}") : -len("\\end{pmatrix}")
].split("\\\\")
if line.strip()
]
matched = True
if len(pred_lines) == len(ref_lines):
for pred_line, ref_line in zip(pred_lines, ref_lines):
pred_parts = pred_line.split("&")
ref_parts = ref_line.split("&")
if len(pred_parts) == len(ref_parts):
if not all(
[
math_equal(
pred_parts[i],
ref_parts[i],
include_percentage,
is_close,
)
for i in range(len(pred_parts))
]
):
matched = False
break
else:
matched = False
if not matched:
break
else:
matched = False
if matched:
return True
if prediction.count("=") == 1 and reference.count("=") == 1:
pred = prediction.split("=")
pred = f"{pred[0].strip()} - ({pred[1].strip()})"
ref = reference.split("=")
ref = f"{ref[0].strip()} - ({ref[1].strip()})"
if symbolic_equal(pred, ref) or symbolic_equal(f"-({pred})", ref):
return True
elif (
prediction.count("=") == 1
and len(prediction.split("=")[0].strip()) <= 2
and "=" not in reference
):
if math_equal(
prediction.split("=")[1], reference, include_percentage, is_close
):
return True
elif (
reference.count("=") == 1
and len(reference.split("=")[0].strip()) <= 2
and "=" not in prediction
):
if math_equal(
prediction, reference.split("=")[1], include_percentage, is_close
):
return True
# symbolic equal with sympy
if timeout:
if call_with_timeout(symbolic_equal_process, prediction, reference):
return True
else:
if symbolic_equal(prediction, reference):
return True
return False
def numeric_equal(prediction: float, reference: float):
# Note that relative tolerance has significant impact
# on the result of the synthesized GSM-Hard dataset
# if reference.is_integer():
# return isclose(reference, round(prediction), abs_tol=1e-4)
# else:
# prediction = round(prediction, len(str(reference).split(".")[-1]))
return isclose(reference, prediction, rel_tol=1e-4)
def fraction_equal(prediction, reference):
def _calculate_numbers(input_string):
try:
result = eval(input_string)
return result
except:
return None
reference = re.sub(r'\\frac{(.*?)}{(.*?)}', r'(\1/\2)', reference)
prediction = re.sub(r'\\frac{(.*?)}{(.*?)}', r'(\1/\2)', prediction)
if reference == prediction:
return True
reference = _calculate_numbers(reference)
prediction = _calculate_numbers(prediction)
if reference and reference == prediction:
return True
return False
def symbolic_equal(a, b):
def _parse(s):
for f in [parse_latex, parse_expr, latex2sympy]:
try:
return f(s.replace("\\\\", "\\"))
except:
try:
return f(s)
except:
pass
return s
a = _parse(a)
b = _parse(b)
# direct equal
try:
if str(a) == str(b) or a == b:
return True
except:
pass
# simplify equal
try:
if a.equals(b) or simplify(a - b) == 0:
return True
except:
pass
# equation equal
try:
if (abs(a.lhs - a.rhs)).equals(abs(b.lhs - b.rhs)):
return True
except:
pass
try:
if numeric_equal(float(N(a)), float(N(b))):
return True
except:
pass
# matrix
try:
# if a and b are matrix
if a.shape == b.shape:
_a = a.applyfunc(lambda x: round(x, 3))
_b = b.applyfunc(lambda x: round(x, 3))
if _a.equals(_b):
return True
except:
pass
return False
def symbolic_equal_process(a, b, output_queue):
result = symbolic_equal(a, b)
output_queue.put(result)
def math_equal_process(prediction, reference, output_queue):
result = math_equal(prediction, reference, timeout=True)
output_queue.put(result)
def call_with_timeout(func, *args, timeout=1, **kwargs):
output_queue = multiprocessing.Queue()
process_args = args + (output_queue,)
process = multiprocessing.Process(target=func, args=process_args, kwargs=kwargs)
process.start()
process.join(timeout)
if process.is_alive():
process.terminate()
process.join()
return False
return output_queue.get()
def check_correctness_of_multiple_answer_cases(prediction, reference, all_matches):
if prediction.replace(",", "").replace("$", "") == reference.replace(",", "").replace("$", ""):
return True
if not prediction.split("=")[-1] == reference.split("=")[-1].replace("$", ""):
return False
if "," in reference or "or" in reference or "and" in reference:
## there are multiple answers
if len(all_matches) <= 1:
return False
prediction1 = prediction.split("=")[-1]
prediction2 = all_matches[-2].split("=")[-1]
reference = reference.replace("$", "")
if "or" in reference:
gold_list = reference.split("or", 1)
elif "and" in reference:
gold_list = reference.split("and", 1)
else:
gold_list = reference.split(",", 1)
reference1 = gold_list[-1].split("=")[-1]
reference2 = gold_list[-2].split("=")[-1]
if math_equal(prediction1, reference1) and math_equal(prediction2, reference2):
return True
elif math_equal(prediction2, reference1) and math_equal(prediction1, reference2):
return True
return False
else:
return True
def is_equal(model_output, reference, dataset_name):
extracted_model_answer, all_matches = extract_final_answer(model_output)
if extracted_model_answer is None or reference is None:
return False
extracted_model_answer = math_answer_cleaning(extracted_model_answer, dataset_name)
reference = math_answer_cleaning(reference, dataset_name)
# if math_equal(prediction, reference, timeout=True):
if call_with_timeout(math_equal_process, extracted_model_answer, reference):
return True
if dataset_name == "collegemath":
return check_correctness_of_multiple_answer_cases(extracted_model_answer, reference, all_matches)
return False
|