File size: 18,691 Bytes
94f14e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601

"""
This script is adapted from Qwen2.5-Math
https://github.com/QwenLM/Qwen2.5-Math/blob/main/evaluation/grader.py
"""

import re
import regex
import multiprocessing
from math import isclose
from typing import Union
from collections import defaultdict

from sympy import simplify, N
from sympy.parsing.sympy_parser import parse_expr
from sympy.parsing.latex import parse_latex


def latex2sympy(sympy: str, variable_values={}):
    # record frac
    global frac_type
    if sympy.find(r'\frac') != -1:
        frac_type = r'\frac'
    if sympy.find(r'\dfrac') != -1:
        frac_type = r'\dfrac'
    if sympy.find(r'\tfrac') != -1:
        frac_type = r'\tfrac'
    sympy = sympy.replace(r'\dfrac', r'\frac')
    sympy = sympy.replace(r'\tfrac', r'\frac')
    # Translate Transpose
    sympy = sympy.replace(r'\mathrm{T}', 'T', -1)
    # Translate Derivative
    sympy = sympy.replace(r'\mathrm{d}', 'd', -1).replace(r'{\rm d}', 'd', -1)
    # Translate Matrix
    sympy = sympy.replace(r'\left[\begin{matrix}', r'\begin{bmatrix}', -1).replace(r'\end{matrix}\right]', r'\end{bmatrix}', -1)
    # Translate Permutation
    sympy = re.sub(r"\(([a-zA-Z0-9+\-*/\\ ]+?)\)_{([a-zA-Z0-9+\-*/\\ ]+?)}", r"\\frac{(\1)!}{((\1)-(\2))!}", sympy)
    # Remove \displaystyle
    sympy = sympy.replace(r'\displaystyle', ' ', -1)
    # Remove \quad
    sympy = sympy.replace(r'\quad', ' ', -1).replace(r'\qquad', ' ', -1).replace(r'~', ' ', -1).replace(r'\,', ' ', -1)
    # Remove $
    sympy = sympy.replace(r'$', ' ', -1)

    # variable values
    global VARIABLE_VALUES
    if len(variable_values) > 0:
        VARIABLE_VALUES = variable_values
    else:
        VARIABLE_VALUES = {}

    # setup listener
    matherror = MathErrorListener(sympy)

    # stream input
    stream = InputStream(sympy)
    lex = PSLexer(stream)
    lex.removeErrorListeners()
    lex.addErrorListener(matherror)

    tokens = CommonTokenStream(lex)
    parser = PSParser(tokens)

    # remove default console error listener
    parser.removeErrorListeners()
    parser.addErrorListener(matherror)

    # process the input
    return_data = None
    math = parser.math()

    # if a list
    if math.relation_list():
        return_data = []

        # go over list items
        relation_list = math.relation_list().relation_list_content()
        for list_item in relation_list.relation():
            expr = convert_relation(list_item)
            return_data.append(expr)

    # if not, do default
    else:
        relation = math.relation()
        return_data = convert_relation(relation)

    return return_data


def math_answer_cleaning(answer, dataset_name):
    """
    remove irrelevant strings and unify the answer format before checking whether the answers are equal
    """
    def _is_completely_wrapped_by_text(input_string):
        pattern = r'^\\text{(.*)}$'
        match = re.match(pattern, input_string)
        if match:
            ## input_string is completely wrapped by \text{}
            extracted_content = match.group(1)
            extracted_content = extracted_content.replace("(", "").replace(")", "").replace(",", "")
            return extracted_content
        else:
            return None

    ## remove irrelevant \\text and space
    extracted_content = _is_completely_wrapped_by_text(answer)
    answer = extracted_content if extracted_content else answer
    
    ## e.g., convert 5,\!460 into 5460; convert 14{,}916 into 14916 convert \$4 into 4
    answer = answer.replace(",\!", "").replace("{,}", "").replace("\$", "")
    ## e.g., convert \dfrac{3}{2} into frac{3}{2}
    answer = answer.replace("dfrac{", "frac{").replace("tfrac{", "frac{")
    ## e.g., convert 121^\circ into 121
    answer = answer.replace("^\circ", "")
    answer = answer.replace("^{\circ}", "")
    ## remove \quad
    answer = answer.replace("\quad", "")
    ## remove space
    answer = answer.replace(" ", "")
    ## remove \n
    answer = answer.replace("\n", "").replace("\\n", "")
    ## e.g., convert 3.54\times10^{10} into 3.54e10
    answer = re.sub(r'([+-]?\d*\.?\d+)[\\]times10\^{([+-]?\d+)}', r'\1e\2', answer)
    ## e.g., convert 3.54\times10^10 into 3.54e10
    answer = re.sub(r'([+-]?\d*\.?\d+)[\\]times10\^([+-]?\d+)', r'\1e\2', answer)
    ## e.g., convert 558\,\text{nm} into 558
    answer = re.sub(r'\\,\\text\{.*?\}', '', answer)
    ## e.g., convert 558\text{nm} into 558
    answer = re.sub(r'\\text\{.*?\}', '', answer)
    ## e.g., convert 2^{10} into 2^10
    answer = re.sub(r'(\d+)\^{(\d+)}', r'\1^\2', answer)
    ## lowercase
    answer = answer.lower()

    if dataset_name == "collegemath":
        ## convert 558\mathrm{ft} into 558
        answer = re.sub(r'\\mathrm\{.*?\}', '', answer)
        ## clean noisy answer
        answer = re.sub(r'\$\([^)]*\)', '', answer)
        if answer.endswith("-"):
            answer = answer[:-1]
        if answer.endswith("."):
            answer = answer[:-1]
        if answer.endswith("hours"):
            answer = answer[:-len("hours")]
        ## extract final answer after '=' or ':'
        if "=" in answer:
            answer = answer.split("=", 1)[1]
        if ":" in answer:
            answer = answer.split(":", 1)[1]
        ## \emptyset and \oslash both reprsent empty set in latex
        answer = answer.replace("\\emptyset", "\\oslash")
    if dataset_name == "gsm8k":
        # Example: 5,600 -> 5600
        answer = answer.replace(',', '')
    if dataset_name == "gaokao2023en":
        unit_strings = ['students', 'dollars', 'boxes', 'feet', 'kilometers', 'meters', 'degreesontheBreadusscale', '$', 'a.m.', 'am', 'minutes']
        for unit in unit_strings:
            answer = answer.replace(unit, "")

    return answer


def extract_final_answer(output):
    pattern_re = re.compile(r"\\boxed\{((?:[^{}]|\{(?:[^{}]|\{[^{}]*\})*\})*)\}", re.DOTALL)
    all_matches = pattern_re.findall(output)

    if len(all_matches) >= 1:
        extracted_answer = all_matches[-1]
    else:
        extracted_answer = None
    
    return extracted_answer, all_matches


def round_number(answer):
    def _is_float(string):
        try:
            float(string)
            return True
        except:
            return False

    if _is_float(answer) and float(answer) < 1:
        ## to consider the case like 5.56e-10 (convert 5.56e-10 into 5.6e-10)
        ## still return a string type
        return f"{float(answer):.2g}"
    
    return answer


def choice_answer_clean(pred: str):
    pred = pred.strip("\n").rstrip(".").rstrip("/").strip(" ").lstrip(":")
    # Clean the answer based on the dataset
    tmp = re.findall(r"\b(A|B|C|D|E)\b", pred.upper())
    if tmp:
        pred = tmp
    else:
        pred = [pred.strip().strip(".")]
    pred = pred[-1]
    # Remove the period at the end, again!
    pred = pred.rstrip(".").rstrip("/")
    return pred


def parse_digits(num):
    num = regex.sub(",", "", str(num))
    try:
        return float(num)
    except:
        if num.endswith("%"):
            num = num[:-1]
            if num.endswith("\\"):
                num = num[:-1]
            try:
                return float(num) / 100
            except:
                pass
    return None


def is_digit(num):
    # paired with parse_digits
    return parse_digits(num) is not None


def str_to_pmatrix(input_str):
    input_str = input_str.strip()
    matrix_str = re.findall(r"\{.*,.*\}", input_str)
    pmatrix_list = []

    for m in matrix_str:
        m = m.strip("{}")
        pmatrix = r"\begin{pmatrix}" + m.replace(",", "\\") + r"\end{pmatrix}"
        pmatrix_list.append(pmatrix)

    return ", ".join(pmatrix_list)


def math_equal(
    prediction: Union[bool, float, str],
    reference: Union[float, str],
    include_percentage: bool = True,
    is_close: bool = True,
    timeout: bool = False,
) -> bool:
    """
    Exact match of math if and only if:
    1. numerical equal: both can convert to float and are equal
    2. symbolic equal: both can convert to sympy expression and are equal
    """
    if prediction is None or reference is None:
        return False
    if str(prediction.strip().lower()) == str(reference.strip().lower()):
        return True
    if (
        reference in ["A", "B", "C", "D", "E"]
        and choice_answer_clean(prediction) == reference
    ):
        return True

    # fraction equal
    if fraction_equal(prediction, reference):
        return True

    try:  # numerical equal
        if round_number(prediction) == round_number(reference):
            return True
        if is_digit(prediction) and is_digit(reference):
            prediction = parse_digits(prediction)
            reference = parse_digits(reference)
            # number questions
            if include_percentage:
                gt_result = [reference / 100, reference, reference * 100]
            else:
                gt_result = [reference]
            for item in gt_result:
                try:
                    if is_close:
                        if numeric_equal(prediction, item):
                            return True
                    else:
                        if item == prediction:
                            return True
                except Exception:
                    continue
            return False
    except:
        pass

    if not prediction and prediction not in [0, False]:
        return False

    # symbolic equal
    reference = str(reference).strip()
    prediction = str(prediction).strip()

    ## pmatrix (amps)
    if "pmatrix" in prediction and not "pmatrix" in reference:
        reference = str_to_pmatrix(reference)

    ## deal with [], (), {}
    pred_str, ref_str = prediction, reference
    if (
        prediction.startswith("[")
        and prediction.endswith("]")
        and not reference.startswith("(")
    ) or (
        prediction.startswith("(")
        and prediction.endswith(")")
        and not reference.startswith("[")
    ):
        pred_str = pred_str.strip("[]()")
        ref_str = ref_str.strip("[]()")
    for s in ["{", "}", "(", ")"]:
        ref_str = ref_str.replace(s, "")
        pred_str = pred_str.replace(s, "")
    if pred_str.lower() == ref_str.lower():
        return True

    ## [a, b] vs. [c, d], return a==c and b==d
    if (
        regex.match(r"(\(|\[).+(\)|\])", prediction) is not None
        and regex.match(r"(\(|\[).+(\)|\])", reference) is not None
    ):
        pred_parts = prediction[1:-1].split(",")
        ref_parts = reference[1:-1].split(",")
        if len(pred_parts) == len(ref_parts):
            if all(
                [
                    math_equal(
                        pred_parts[i], ref_parts[i], include_percentage, is_close
                    )
                    for i in range(len(pred_parts))
                ]
            ):
                return True
    if (
        (
            prediction.startswith("\\begin{pmatrix}")
            or prediction.startswith("\\begin{bmatrix}")
        )
        and (
            prediction.endswith("\\end{pmatrix}")
            or prediction.endswith("\\end{bmatrix}")
        )
        and (
            reference.startswith("\\begin{pmatrix}")
            or reference.startswith("\\begin{bmatrix}")
        )
        and (
            reference.endswith("\\end{pmatrix}") or reference.endswith("\\end{bmatrix}")
        )
    ):
        pred_lines = [
            line.strip()
            for line in prediction[
                len("\\begin{pmatrix}") : -len("\\end{pmatrix}")
            ].split("\\\\")
            if line.strip()
        ]
        ref_lines = [
            line.strip()
            for line in reference[
                len("\\begin{pmatrix}") : -len("\\end{pmatrix}")
            ].split("\\\\")
            if line.strip()
        ]
        matched = True
        if len(pred_lines) == len(ref_lines):
            for pred_line, ref_line in zip(pred_lines, ref_lines):
                pred_parts = pred_line.split("&")
                ref_parts = ref_line.split("&")
                if len(pred_parts) == len(ref_parts):
                    if not all(
                        [
                            math_equal(
                                pred_parts[i],
                                ref_parts[i],
                                include_percentage,
                                is_close,
                            )
                            for i in range(len(pred_parts))
                        ]
                    ):
                        matched = False
                        break
                else:
                    matched = False
                if not matched:
                    break
        else:
            matched = False
        if matched:
            return True

    if prediction.count("=") == 1 and reference.count("=") == 1:
        pred = prediction.split("=")
        pred = f"{pred[0].strip()} - ({pred[1].strip()})"
        ref = reference.split("=")
        ref = f"{ref[0].strip()} - ({ref[1].strip()})"
        if symbolic_equal(pred, ref) or symbolic_equal(f"-({pred})", ref):
            return True
    elif (
        prediction.count("=") == 1
        and len(prediction.split("=")[0].strip()) <= 2
        and "=" not in reference
    ):
        if math_equal(
            prediction.split("=")[1], reference, include_percentage, is_close
        ):
            return True
    elif (
        reference.count("=") == 1
        and len(reference.split("=")[0].strip()) <= 2
        and "=" not in prediction
    ):
        if math_equal(
            prediction, reference.split("=")[1], include_percentage, is_close
        ):
            return True

    # symbolic equal with sympy
    if timeout:
        if call_with_timeout(symbolic_equal_process, prediction, reference):
            return True
    else:
        if symbolic_equal(prediction, reference):
            return True

    return False


def numeric_equal(prediction: float, reference: float):
    # Note that relative tolerance has significant impact
    # on the result of the synthesized GSM-Hard dataset
    # if reference.is_integer():
    #     return isclose(reference, round(prediction), abs_tol=1e-4)
    # else:
    # prediction = round(prediction, len(str(reference).split(".")[-1]))
    return isclose(reference, prediction, rel_tol=1e-4)


def fraction_equal(prediction, reference):
    def _calculate_numbers(input_string):
        try:
            result = eval(input_string)
            return result
        except:
            return None
    
    reference = re.sub(r'\\frac{(.*?)}{(.*?)}', r'(\1/\2)', reference)
    prediction = re.sub(r'\\frac{(.*?)}{(.*?)}', r'(\1/\2)', prediction)

    if reference == prediction:
        return True

    reference = _calculate_numbers(reference)
    prediction = _calculate_numbers(prediction)

    if reference and reference == prediction:
        return True
    
    return False

def symbolic_equal(a, b):
    def _parse(s):
        for f in [parse_latex, parse_expr, latex2sympy]:
            try:
                return f(s.replace("\\\\", "\\"))
            except:
                try:
                    return f(s)
                except:
                    pass
        return s

    a = _parse(a)
    b = _parse(b)

    # direct equal
    try:
        if str(a) == str(b) or a == b:
            return True
    except:
        pass

    # simplify equal
    try:
        if a.equals(b) or simplify(a - b) == 0:
            return True
    except:
        pass

    # equation equal
    try:
        if (abs(a.lhs - a.rhs)).equals(abs(b.lhs - b.rhs)):
            return True
    except:
        pass

    try:
        if numeric_equal(float(N(a)), float(N(b))):
            return True
    except:
        pass

    # matrix
    try:
        # if a and b are matrix
        if a.shape == b.shape:
            _a = a.applyfunc(lambda x: round(x, 3))
            _b = b.applyfunc(lambda x: round(x, 3))
            if _a.equals(_b):
                return True
    except:
        pass

    return False


def symbolic_equal_process(a, b, output_queue):
    result = symbolic_equal(a, b)
    output_queue.put(result)


def math_equal_process(prediction, reference, output_queue):
    result = math_equal(prediction, reference, timeout=True)
    output_queue.put(result)


def call_with_timeout(func, *args, timeout=1, **kwargs):
    output_queue = multiprocessing.Queue()
    process_args = args + (output_queue,)
    process = multiprocessing.Process(target=func, args=process_args, kwargs=kwargs)
    process.start()
    process.join(timeout)

    if process.is_alive():
        process.terminate()
        process.join()
        return False

    return output_queue.get()


def check_correctness_of_multiple_answer_cases(prediction, reference, all_matches):

    if prediction.replace(",", "").replace("$", "") == reference.replace(",", "").replace("$", ""):
        return True
    
    if not prediction.split("=")[-1] == reference.split("=")[-1].replace("$", ""):
        return False

    if "," in reference or "or" in reference or "and" in reference:
        ## there are multiple answers
        if len(all_matches) <= 1:
            return False

        prediction1 = prediction.split("=")[-1]
        prediction2 = all_matches[-2].split("=")[-1]
        reference = reference.replace("$", "")
        if "or" in reference:
            gold_list = reference.split("or", 1)
        elif "and" in reference:
            gold_list = reference.split("and", 1)
        else:
            gold_list = reference.split(",", 1)
        
        reference1 = gold_list[-1].split("=")[-1]
        reference2 = gold_list[-2].split("=")[-1]
        
        if math_equal(prediction1, reference1) and math_equal(prediction2, reference2):
            return True
        elif math_equal(prediction2, reference1) and math_equal(prediction1, reference2):
            return True

        return False
        
    else:
        return True


def is_equal(model_output, reference, dataset_name):
    
    extracted_model_answer, all_matches = extract_final_answer(model_output)
    if extracted_model_answer is None or reference is None:
        return False

    extracted_model_answer = math_answer_cleaning(extracted_model_answer, dataset_name)
    reference = math_answer_cleaning(reference, dataset_name)

    # if math_equal(prediction, reference, timeout=True):
    if call_with_timeout(math_equal_process, extracted_model_answer, reference):
        return True
    
    if dataset_name == "collegemath":
        return check_correctness_of_multiple_answer_cases(extracted_model_answer, reference, all_matches)

    return False