File size: 21,378 Bytes
12316a2
f1dd4b5
 
 
 
 
 
 
 
12316a2
 
f1dd4b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845d18b
f1dd4b5
 
 
845d18b
 
f1dd4b5
 
 
 
 
 
 
 
 
 
 
 
 
845d18b
 
 
 
 
 
 
 
 
 
 
 
 
f1dd4b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5093071
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1dd4b5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
---
license: mit
language:
- multilingual
tags:
- nlp
base_model: OpenGVLab/InternVL2_5-8B
pipeline_tag: text-generation
inference: true
---

# NuExtract-2-8B by NuMind 🔥

NuExtract 2.0 is a family of models trained specifically for structured information extraction tasks. It supports both multimodal inputs and is multilingual.

We provide several versions of different sizes, all based on the InternVL2.5 family.
| Model Size | Model Name | Base Model | Huggingface Link |
|------------|------------|------------|------------------|
| 2B | NuExtract-2.0-2B | [InternVL2_5-2B](https://huggingface.co./OpenGVLab/InternVL2_5-2B) | [NuExtract-2-2B](https://huggingface.co./numind/NuExtract-2-2B) |
| 4B | NuExtract-2.0-4B | [InternVL2_5-4B](https://huggingface.co./OpenGVLab/InternVL2_5-4B) | [NuExtract-2-4B](https://huggingface.co./numind/NuExtract-2-4B) |
| 8B | NuExtract-2.0-8B | [InternVL2_5-8B](https://huggingface.co./OpenGVLab/InternVL2_5-8B) | [NuExtract-2-8B](https://huggingface.co./numind/NuExtract-2-8B) |

## Overview

To use the model, provide an input text/image and a JSON template describing the information you need to extract. The template should be a JSON object, specifying field names and their expected type.

Support types include:
* `verbatim-string` - instructs the model to extract text that is present verbatim in the input.
* `string` - a generic string field that can incorporate paraphrasing/abstraction.
* `integer` - a whole number.
* `number` - a whole or decimal number.
* `date-time` - ISO formatted date.
* Array of any of the above types (e.g. `["string"]`)
* `enum` - a choice from set of possible answers (represented in template as an array of options, e.g. `["yes", "no", "maybe"]`).
* `multi-label` - an enum that can have multiple possible answers (represented in template as a double-wrapped array, e.g. `[["A", "B", "C"]]`).

If the model does not identify relevant information for a field, it will return `null` or `[]` (for arrays and multi-labels).

The following is an example template:
```json
{
  "first_name": "verbatim-string",
  "last_name": "verbatim-string",
  "description": "string",
  "age": "integer",
  "gpa": "number",
  "birth_date": "date-time",
  "nationality": ["France", "England", "Japan", "USA", "China"],
  "languages_spoken": [["English", "French", "Japanese", "Mandarin", "Spanish"]]
}
```
An example output:
```json
{
  "first_name": "Susan",
  "last_name": "Smith",
  "description": "A student studying computer science.",
  "age": 20,
  "gpa": 3.7,
  "birth_date": "2005-03-01",
  "nationality": "England",
  "languages_spoken": ["English", "French"]
}
```

⚠️ We recommend using NuExtract with a temperature at or very close to 0. Some inference frameworks, such as Ollama, use a default of 0.7 which is not well suited to many extraction tasks.

## Inference

Use the following code to handle loading and preprocessing of input data:

```python
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images

def load_image(image_file, input_size=448, max_num=12):
    image = Image.open(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values

def prepare_inputs(messages, image_paths, tokenizer, device='cuda', dtype=torch.bfloat16):
    """
    Prepares multi-modal input components (supports multiple images per prompt).
    
    Args:
        messages: List of input messages/prompts (strings or dicts with 'role' and 'content')
        image_paths: List where each element is either None (for text-only) or a list of image paths
        tokenizer: The tokenizer to use for applying chat templates
        device: Device to place tensors on ('cuda', 'cpu', etc.)
        dtype: Data type for image tensors (default: torch.bfloat16)
    
    Returns:
        dict: Contains 'prompts', 'pixel_values_list', and 'num_patches_list' ready for the model
    """
    # Make sure image_paths list is at least as long as messages
    if len(image_paths) < len(messages):
        # Pad with None for text-only messages
        image_paths = image_paths + [None] * (len(messages) - len(image_paths))
    
    # Process images and collect patch information
    loaded_images = []
    num_patches_list = []
    for paths in image_paths:
        if paths and isinstance(paths, list) and len(paths) > 0:
            # Load each image in this prompt
            prompt_images = []
            prompt_patches = []
            
            for path in paths:
                # Load the image
                img = load_image(path).to(dtype=dtype, device=device)
                
                # Ensure img has correct shape [patches, C, H, W]
                if len(img.shape) == 3:  # [C, H, W] -> [1, C, H, W]
                    img = img.unsqueeze(0)
                    
                prompt_images.append(img)
                # Record the number of patches for this image
                prompt_patches.append(img.shape[0])
            
            loaded_images.append(prompt_images)
            num_patches_list.append(prompt_patches)
        else:
            # Text-only prompt
            loaded_images.append(None)
            num_patches_list.append([])
    
    # Create the concatenated pixel_values_list
    pixel_values_list = []
    for prompt_images in loaded_images:
        if prompt_images:
            # Concatenate all images for this prompt
            pixel_values_list.append(torch.cat(prompt_images, dim=0))
        else:
            # Text-only prompt
            pixel_values_list.append(None)
    
    # Format messages for the model
    if all(isinstance(m, str) for m in messages):
        # Simple string messages: convert to chat format
        batch_messages = [
            [{"role": "user", "content": message}] 
            for message in messages
        ]
    else:
        # Assume messages are already in the right format
        batch_messages = messages
    
    # Apply chat template
    prompts = tokenizer.apply_chat_template(
        batch_messages,
        tokenize=False,
        add_generation_prompt=True
    )
    
    return {
        'prompts': prompts,
        'pixel_values_list': pixel_values_list,
        'num_patches_list': num_patches_list
    }

def construct_message(text, template, examples=None):
    """
    Construct the individual NuExtract message texts, prior to chat template formatting.
    """
    # add few-shot examples if needed
    if examples is not None and len(examples) > 0:
        icl = "# Examples:\n"
        for row in examples:
            icl += f"## Input:\n{row['input']}\n## Output:\n{row['output']}\n"
    else:
        icl = ""
        
    return f"""# Template:\n{template}\n{icl}# Context:\n{text}"""
```

To handle inference:

```python
IMG_START_TOKEN='<img>'
IMG_END_TOKEN='</img>'
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>'

def nuextract_generate(model, tokenizer, prompts, generation_config, pixel_values_list=None, num_patches_list=None):
    """
    Generate responses for a batch of NuExtract inputs.
    Support for multiple and varying numbers of images per prompt.
    
    Args:
        model: The vision-language model
        tokenizer: The tokenizer for the model
        pixel_values_list: List of tensor batches, one per prompt
                          Each batch has shape [num_images, channels, height, width] or None for text-only prompts
        prompts: List of text prompts
        generation_config: Configuration for text generation
        num_patches_list: List of lists, each containing patch counts for images in a prompt
        
    Returns:
        List of generated responses
    """
    img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
    model.img_context_token_id = img_context_token_id
    
    # Replace all image placeholders with appropriate tokens
    modified_prompts = []
    total_image_files = 0
    total_patches = 0
    image_containing_prompts = []
    for idx, prompt in enumerate(prompts):
        # check if this prompt has images
        has_images = (pixel_values_list and
                      idx < len(pixel_values_list) and 
                      pixel_values_list[idx] is not None and 
                      isinstance(pixel_values_list[idx], torch.Tensor) and
                      pixel_values_list[idx].shape[0] > 0)
        
        if has_images:
            # prompt with image placeholders
            image_containing_prompts.append(idx)
            modified_prompt = prompt
            
            patches = num_patches_list[idx] if (num_patches_list and idx < len(num_patches_list)) else []
            num_images = len(patches)
            total_image_files += num_images
            total_patches += sum(patches)
            
            # replace each <image> placeholder with image tokens
            for i, num_patches in enumerate(patches):
                image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * model.num_image_token * num_patches + IMG_END_TOKEN
                modified_prompt = modified_prompt.replace('<image>', image_tokens, 1)
        else:
            # text-only prompt
            modified_prompt = prompt
        
        modified_prompts.append(modified_prompt)
    
    # process all prompts in a single batch
    tokenizer.padding_side = 'left'
    model_inputs = tokenizer(modified_prompts, return_tensors='pt', padding=True)
    input_ids = model_inputs['input_ids'].to(model.device)
    attention_mask = model_inputs['attention_mask'].to(model.device)
    
    eos_token_id = tokenizer.convert_tokens_to_ids("<|im_end|>\n".strip())
    generation_config['eos_token_id'] = eos_token_id
    
    # prepare pixel values
    flattened_pixel_values = None
    if image_containing_prompts:
        # collect and concatenate all image tensors
        all_pixel_values = []
        for idx in image_containing_prompts:
            all_pixel_values.append(pixel_values_list[idx])
        
        flattened_pixel_values = torch.cat(all_pixel_values, dim=0)
        print(f"Processing batch with {len(prompts)} prompts, {total_image_files} actual images, and {total_patches} total patches")
    else:
        print(f"Processing text-only batch with {len(prompts)} prompts")
    
    # generate outputs
    outputs = model.generate(
        pixel_values=flattened_pixel_values,  # will be None for text-only prompts
        input_ids=input_ids,
        attention_mask=attention_mask,
        **generation_config
    )
    
    # Decode responses
    responses = tokenizer.batch_decode(outputs, skip_special_tokens=True)
    
    return responses
```

To load the model:

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = ""

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, padding_side='left')
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, 
                                             torch_dtype=torch.bfloat16,
                                             attn_implementation="flash_attention_2" # we recommend using flash attention
                                            ).to("cuda")
```

Simple 0-shot text-only example:
```python
template = """{"names": ["verbatim-string"]}"""
text = "John went to the restaurant with Mary. James went to the cinema."

input_messages = [construct_message(text, template)]

input_content = prepare_inputs(
    messages=input_messages,
    image_paths=[],
    tokenizer=tokenizer,
)

generation_config = {"do_sample": False, "num_beams": 1, "max_new_tokens": 2048}

with torch.no_grad():
    result = nuextract_generate(
        model=model,
        tokenizer=tokenizer,
        prompts=input_content['prompts'],
        pixel_values_list=input_content['pixel_values_list'],
        num_patches_list=input_content['num_patches_list'],
        generation_config=generation_config
    )
for y in result:
    print(y)
# {"names": ["John", "Mary", "James"]}
```

Text-only input with an in-context example:
```python
template = """{"names": ["verbatim-string"], "female_names": ["verbatim-string"]}"""
text = "John went to the restaurant with Mary. James went to the cinema."
examples = [
    {
        "input": "Stephen is the manager at Susan's store.",
        "output": """{"names": ["STEPHEN", "SUSAN"], "female_names": ["SUSAN"]}"""
    }
]

input_messages = [construct_message(text, template, examples)]

input_content = prepare_inputs(
    messages=input_messages,
    image_paths=[],
    tokenizer=tokenizer,
)

generation_config = {"do_sample": False, "num_beams": 1, "max_new_tokens": 2048}

with torch.no_grad():
    result = nuextract_generate(
        model=model,
        tokenizer=tokenizer,
        prompts=input_content['prompts'],
        pixel_values_list=input_content['pixel_values_list'],
        num_patches_list=input_content['num_patches_list'],
        generation_config=generation_config
    )
for y in result:
    print(y)
# {"names": ["JOHN", "MARY", "JAMES"], "female_names": ["MARY"]}
```

Example with image input and an in-context example. Image inputs should use `<image>` placeholder instead of text and image paths should be provided in a list in order of appearance in the prompt (in this example `0.jpg` will be for the in-context example and `1.jpg` for the true input).
```python
template = """{"store": "verbatim-string"}"""
text = "<image>"
examples = [
    {
        "input": "<image>",
        "output": """{"store": "Walmart"}"""
    }
]

input_messages = [construct_message(text, template, examples)]

images = [
    ["0.jpg", "1.jpg"]
]

input_content = prepare_inputs(
    messages=input_messages,
    image_paths=images,
    tokenizer=tokenizer,
)

generation_config = {"do_sample": False, "num_beams": 1, "max_new_tokens": 2048}

with torch.no_grad():
    result = nuextract_generate(
        model=model,
        tokenizer=tokenizer,
        prompts=input_content['prompts'],
        pixel_values_list=input_content['pixel_values_list'],
        num_patches_list=input_content['num_patches_list'],
        generation_config=generation_config
    )
for y in result:
    print(y)
# {"store": "Trader Joe's"}
```

Multi-modal batched input:
```python
inputs = [
    # image input with no ICL examples
    {
        "text": "<image>",
        "template": """{"store_name": "verbatim-string"}""",
        "examples": None,
    },
    # image input with 1 ICL example
    {
        "text": "<image>",
        "template": """{"store_name": "verbatim-string"}""",
        "examples": [
            {
                "input": "<image>",
                "output": """{"store_name": "Walmart"}""",
            }
        ],
    },
    # text input with no ICL examples
    {
        "text": "John went to the restaurant with Mary. James went to the cinema.",
        "template": """{"names": ["verbatim-string"]}""",
        "examples": None,
    },
    # text input with ICL example
    {
        "text": "John went to the restaurant with Mary. James went to the cinema.",
        "template": """{"names": ["verbatim-string"], "female_names": ["verbatim-string"]}""",
        "examples": [
            {
                "input": "Stephen is the manager at Susan's store.",
                "output": """{"names": ["STEPHEN", "SUSAN"], "female_names": ["SUSAN"]}"""
            }
        ],
    },
]

input_messages = [
    construct_message(
        x["text"], 
        x["template"], 
        x["examples"]
    ) for x in inputs
]

images = [
    ["0.jpg"],
    ["0.jpg", "1.jpg"],
    None,
    None
]

input_content = prepare_inputs(
    messages=input_messages,
    image_paths=images,
    tokenizer=tokenizer,
)

generation_config = {"do_sample": False, "num_beams": 1, "max_new_tokens": 2048}

with torch.no_grad():
    result = nuextract_generate(
        model=model,
        tokenizer=tokenizer,
        prompts=input_content['prompts'],
        pixel_values_list=input_content['pixel_values_list'],
        num_patches_list=input_content['num_patches_list'],
        generation_config=generation_config
    )
for y in result:
    print(y)
# {"store_name": "WAL*MART"}
# {"store_name": "Trader Joe's"}
# {"names": ["John", "Mary", "James"]}
# {"names": ["JOHN", "MARY", "JAMES"], "female_names": ["MARY"]}
```

## Template Generation
If you want to convert existing schema files you have in other formats (e.g. XML, YAML, etc.) or start from an example, NuExtract 2 models can automatically generate this for you.

E.g. convert XML into a NuExtract template:
```python
def generate_template(description):
    input_messages = [description]
    input_content = prepare_inputs(
        messages=input_messages,
        image_paths=[],
        tokenizer=tokenizer,
    )
    generation_config = {"do_sample": True, "temperature": 0.4, "max_new_tokens": 256}
    with torch.no_grad():
        result = nuextract_generate(
            model=model,
            tokenizer=tokenizer,
            prompts=input_content['prompts'],
            pixel_values_list=input_content['pixel_values_list'],
            num_patches_list=input_content['num_patches_list'],
            generation_config=generation_config
        )
    return result[0]
xml_template = """<SportResult>
    <Date></Date>
    <Sport></Sport>
    <Venue></Venue>
    <HomeTeam></HomeTeam>
    <AwayTeam></AwayTeam>
    <HomeScore></HomeScore>
    <AwayScore></AwayScore>
    <TopScorer></TopScorer>
</SportResult>"""
result = generate_template(xml_template)
    
print(result)
# { 
#     "SportResult": {
#         "Date": "date-time",
#         "Sport": "verbatim-string",
#         "Venue": "verbatim-string",
#         "HomeTeam": "verbatim-string",
#         "AwayTeam": "verbatim-string",
#         "HomeScore": "integer",
#         "AwayScore": "integer",
#         "TopScorer": "verbatim-string"
#     }
# }
```

E.g. generate a template from natural language description:
```python
text = """Give me relevant info about startup companies mentioned."""
result = generate_template(text)
    
print(result)
# {
#     "Startup_Companies": [
#         {
#             "Name": "verbatim-string",
#             "Products": [
#                 "string"
#             ],
#             "Location": "verbatim-string",
#             "Company_Type": [
#                 "Technology",
#                 "Finance",
#                 "Health",
#                 "Education",
#                 "Other"
#             ]
#         }
#     ]
# }
```