liamcripwell commited on
Commit
a715676
·
verified ·
1 Parent(s): 02597da

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,524 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - multilingual
5
+ tags:
6
+ - nlp
7
+ base_model: OpenGVLab/InternVL2_5-4B
8
+ pipeline_tag: text-generation
9
+ inference: true
10
+ ---
11
+
12
+ # NuExtract-2.0-4B by NuMind 🔥
13
+
14
+ NuExtract 2.0 is a family of models trained specifically for structured information extraction tasks. It supports both multimodal inputs and is multilingual.
15
+
16
+ We provide several versions of different sizes, all based on the InternVL2.5 family.
17
+ | Model Size | Model Name | Base Model | Huggingface Link |
18
+ |------------|------------|------------|------------------|
19
+ | 2B | NuExtract-2.0-2B | [InternVL2_5-2B](https://huggingface.co/OpenGVLab/InternVL2_5-2B) | [NuExtract-2.0-2B](https://huggingface.co/numind/NuExtract-2.0-2B) |
20
+ | 4B | NuExtract-2.0-4B | [InternVL2_5-4B](https://huggingface.co/OpenGVLab/InternVL2_5-4B) | [NuExtract-2.0-4B](https://huggingface.co/numind/NuExtract-2.0-4B) |
21
+ | 8B | NuExtract-2.0-8B | [InternVL2_5-8B](https://huggingface.co/OpenGVLab/InternVL2_5-8B) | [NuExtract-2.0-8B](https://huggingface.co/numind/NuExtract-2.0-8B) |
22
+
23
+ ## Overview
24
+
25
+ To use the model, provide an input text/image and a JSON template describing the information you need to extract. The template should be a JSON object, specifying field names and their expected type.
26
+
27
+ Support types include:
28
+ * `verbatim-string` - instructs the model to extract text that is present verbatim in the input.
29
+ * `string` - a generic string field that can incorporate paraphrasing/abstraction.
30
+ * `integer` - a whole number.
31
+ * `number` - a whole or decimal number.
32
+ * `date-time` - ISO formatted date.
33
+ * `enum` - a choice from set of possible answers (represented in template as an array of options, e.g. `["yes", "no", "maybe"]`).
34
+ * `multi-label` - an enum that can have multiple possible answers (represented in template as a double-wrapped array, e.g. `[["A", "B", "C"]]`).
35
+
36
+ The following is an example template:
37
+ ```json
38
+ {
39
+ "first_name": "verbatim-string",
40
+ "last_name": "verbatim-string",
41
+ "description": "string",
42
+ "age": "integer",
43
+ "gpa": "number",
44
+ "birth_date": "date-time",
45
+ "nationality": ["France", "England", "Japan", "USA", "China"],
46
+ "languages_spoken": [["English", "French", "Japanese", "Mandarin", "Spanish"]]
47
+ }
48
+ ```
49
+
50
+
51
+ ⚠️ We recommend using NuExtract with a temperature at or very close to 0. Some inference frameworks, such as Ollama, use a default of 0.7 which is not well suited to many extraction tasks.
52
+
53
+ ## Inference
54
+
55
+ Use the following code to handle loading and preprocessing of input data:
56
+
57
+ ```python
58
+ import torch
59
+ import torchvision.transforms as T
60
+ from PIL import Image
61
+ from torchvision.transforms.functional import InterpolationMode
62
+
63
+ IMAGENET_MEAN = (0.485, 0.456, 0.406)
64
+ IMAGENET_STD = (0.229, 0.224, 0.225)
65
+
66
+ def build_transform(input_size):
67
+ MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
68
+ transform = T.Compose([
69
+ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
70
+ T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
71
+ T.ToTensor(),
72
+ T.Normalize(mean=MEAN, std=STD)
73
+ ])
74
+ return transform
75
+
76
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
77
+ best_ratio_diff = float('inf')
78
+ best_ratio = (1, 1)
79
+ area = width * height
80
+ for ratio in target_ratios:
81
+ target_aspect_ratio = ratio[0] / ratio[1]
82
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
83
+ if ratio_diff < best_ratio_diff:
84
+ best_ratio_diff = ratio_diff
85
+ best_ratio = ratio
86
+ elif ratio_diff == best_ratio_diff:
87
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
88
+ best_ratio = ratio
89
+ return best_ratio
90
+
91
+ def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
92
+ orig_width, orig_height = image.size
93
+ aspect_ratio = orig_width / orig_height
94
+
95
+ # calculate the existing image aspect ratio
96
+ target_ratios = set(
97
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
98
+ i * j <= max_num and i * j >= min_num)
99
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
100
+
101
+ # find the closest aspect ratio to the target
102
+ target_aspect_ratio = find_closest_aspect_ratio(
103
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
104
+
105
+ # calculate the target width and height
106
+ target_width = image_size * target_aspect_ratio[0]
107
+ target_height = image_size * target_aspect_ratio[1]
108
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
109
+
110
+ # resize the image
111
+ resized_img = image.resize((target_width, target_height))
112
+ processed_images = []
113
+ for i in range(blocks):
114
+ box = (
115
+ (i % (target_width // image_size)) * image_size,
116
+ (i // (target_width // image_size)) * image_size,
117
+ ((i % (target_width // image_size)) + 1) * image_size,
118
+ ((i // (target_width // image_size)) + 1) * image_size
119
+ )
120
+ # split the image
121
+ split_img = resized_img.crop(box)
122
+ processed_images.append(split_img)
123
+ assert len(processed_images) == blocks
124
+ if use_thumbnail and len(processed_images) != 1:
125
+ thumbnail_img = image.resize((image_size, image_size))
126
+ processed_images.append(thumbnail_img)
127
+ return processed_images
128
+
129
+ def load_image(image_file, input_size=448, max_num=12):
130
+ image = Image.open(image_file).convert('RGB')
131
+ transform = build_transform(input_size=input_size)
132
+ images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
133
+ pixel_values = [transform(image) for image in images]
134
+ pixel_values = torch.stack(pixel_values)
135
+ return pixel_values
136
+
137
+ def prepare_inputs(messages, image_paths, tokenizer, device='cuda', dtype=torch.bfloat16):
138
+ """
139
+ Prepares multi-modal input components (supports multiple images per prompt).
140
+
141
+ Args:
142
+ messages: List of input messages/prompts (strings or dicts with 'role' and 'content')
143
+ image_paths: List where each element is either None (for text-only) or a list of image paths
144
+ tokenizer: The tokenizer to use for applying chat templates
145
+ device: Device to place tensors on ('cuda', 'cpu', etc.)
146
+ dtype: Data type for image tensors (default: torch.bfloat16)
147
+
148
+ Returns:
149
+ dict: Contains 'prompts', 'pixel_values_list', and 'num_patches_list' ready for the model
150
+ """
151
+ # Make sure image_paths list is at least as long as messages
152
+ if len(image_paths) < len(messages):
153
+ # Pad with None for text-only messages
154
+ image_paths = image_paths + [None] * (len(messages) - len(image_paths))
155
+
156
+ # Process images and collect patch information
157
+ loaded_images = []
158
+ num_patches_list = []
159
+ for paths in image_paths:
160
+ if paths and isinstance(paths, list) and len(paths) > 0:
161
+ # Load each image in this prompt
162
+ prompt_images = []
163
+ prompt_patches = []
164
+
165
+ for path in paths:
166
+ # Load the image
167
+ img = load_image(path).to(dtype=dtype, device=device)
168
+
169
+ # Ensure img has correct shape [patches, C, H, W]
170
+ if len(img.shape) == 3: # [C, H, W] -> [1, C, H, W]
171
+ img = img.unsqueeze(0)
172
+
173
+ prompt_images.append(img)
174
+ # Record the number of patches for this image
175
+ prompt_patches.append(img.shape[0])
176
+
177
+ loaded_images.append(prompt_images)
178
+ num_patches_list.append(prompt_patches)
179
+ else:
180
+ # Text-only prompt
181
+ loaded_images.append(None)
182
+ num_patches_list.append([])
183
+
184
+ # Create the concatenated pixel_values_list
185
+ pixel_values_list = []
186
+ for prompt_images in loaded_images:
187
+ if prompt_images:
188
+ # Concatenate all images for this prompt
189
+ pixel_values_list.append(torch.cat(prompt_images, dim=0))
190
+ else:
191
+ # Text-only prompt
192
+ pixel_values_list.append(None)
193
+
194
+ # Format messages for the model
195
+ if all(isinstance(m, str) for m in messages):
196
+ # Simple string messages: convert to chat format
197
+ batch_messages = [
198
+ [{"role": "user", "content": message}]
199
+ for message in messages
200
+ ]
201
+ else:
202
+ # Assume messages are already in the right format
203
+ batch_messages = messages
204
+
205
+ # Apply chat template
206
+ prompts = tokenizer.apply_chat_template(
207
+ batch_messages,
208
+ tokenize=False,
209
+ add_generation_prompt=True
210
+ )
211
+
212
+ return {
213
+ 'prompts': prompts,
214
+ 'pixel_values_list': pixel_values_list,
215
+ 'num_patches_list': num_patches_list
216
+ }
217
+
218
+ def construct_message(text, template, examples=None):
219
+ """
220
+ Construct the individual NuExtract message texts, prior to chat template formatting.
221
+ """
222
+ # add few-shot examples if needed
223
+ if examples is not None and len(examples) > 0:
224
+ icl = "# Examples:\n"
225
+ for row in examples:
226
+ icl += f"## Input:\n{row['input']}\n## Output:\n{row['output']}\n"
227
+ else:
228
+ icl = ""
229
+
230
+ return f"""# Template:\n{template}\n{icl}# Context:\n{text}"""
231
+ ```
232
+
233
+ To handle inference:
234
+
235
+ ```python
236
+ IMG_START_TOKEN='<img>'
237
+ IMG_END_TOKEN='</img>'
238
+ IMG_CONTEXT_TOKEN='<IMG_CONTEXT>'
239
+
240
+ def nuextract_generate(model, tokenizer, prompts, generation_config, pixel_values_list=None, num_patches_list=None):
241
+ """
242
+ Generate responses for a batch of NuExtract inputs.
243
+ Support for multiple and varying numbers of images per prompt.
244
+
245
+ Args:
246
+ model: The vision-language model
247
+ tokenizer: The tokenizer for the model
248
+ pixel_values_list: List of tensor batches, one per prompt
249
+ Each batch has shape [num_images, channels, height, width] or None for text-only prompts
250
+ prompts: List of text prompts
251
+ generation_config: Configuration for text generation
252
+ num_patches_list: List of lists, each containing patch counts for images in a prompt
253
+
254
+ Returns:
255
+ List of generated responses
256
+ """
257
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
258
+ model.img_context_token_id = img_context_token_id
259
+
260
+ # Replace all image placeholders with appropriate tokens
261
+ modified_prompts = []
262
+ total_image_files = 0
263
+ total_patches = 0
264
+ image_containing_prompts = []
265
+ for idx, prompt in enumerate(prompts):
266
+ # check if this prompt has images
267
+ has_images = (pixel_values_list and
268
+ idx < len(pixel_values_list) and
269
+ pixel_values_list[idx] is not None and
270
+ isinstance(pixel_values_list[idx], torch.Tensor) and
271
+ pixel_values_list[idx].shape[0] > 0)
272
+
273
+ if has_images:
274
+ # prompt with image placeholders
275
+ image_containing_prompts.append(idx)
276
+ modified_prompt = prompt
277
+
278
+ patches = num_patches_list[idx] if (num_patches_list and idx < len(num_patches_list)) else []
279
+ num_images = len(patches)
280
+ total_image_files += num_images
281
+ total_patches += sum(patches)
282
+
283
+ # replace each <image> placeholder with image tokens
284
+ for i, num_patches in enumerate(patches):
285
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * model.num_image_token * num_patches + IMG_END_TOKEN
286
+ modified_prompt = modified_prompt.replace('<image>', image_tokens, 1)
287
+ else:
288
+ # text-only prompt
289
+ modified_prompt = prompt
290
+
291
+ modified_prompts.append(modified_prompt)
292
+
293
+ # process all prompts in a single batch
294
+ tokenizer.padding_side = 'left'
295
+ model_inputs = tokenizer(modified_prompts, return_tensors='pt', padding=True)
296
+ input_ids = model_inputs['input_ids'].to(model.device)
297
+ attention_mask = model_inputs['attention_mask'].to(model.device)
298
+
299
+ eos_token_id = tokenizer.convert_tokens_to_ids("<|im_end|>\n".strip())
300
+ generation_config['eos_token_id'] = eos_token_id
301
+
302
+ # prepare pixel values
303
+ flattened_pixel_values = None
304
+ if image_containing_prompts:
305
+ # collect and concatenate all image tensors
306
+ all_pixel_values = []
307
+ for idx in image_containing_prompts:
308
+ all_pixel_values.append(pixel_values_list[idx])
309
+
310
+ flattened_pixel_values = torch.cat(all_pixel_values, dim=0)
311
+ print(f"Processing batch with {len(prompts)} prompts, {total_image_files} actual images, and {total_patches} total patches")
312
+ else:
313
+ print(f"Processing text-only batch with {len(prompts)} prompts")
314
+
315
+ # generate outputs
316
+ outputs = model.generate(
317
+ pixel_values=flattened_pixel_values, # will be None for text-only prompts
318
+ input_ids=input_ids,
319
+ attention_mask=attention_mask,
320
+ **generation_config
321
+ )
322
+
323
+ # Decode responses
324
+ responses = tokenizer.batch_decode(outputs, skip_special_tokens=True)
325
+
326
+ return responses
327
+ ```
328
+
329
+ To load the model:
330
+
331
+ ```python
332
+ import torch
333
+ from transformers import AutoModelForCausalLM, AutoTokenizer
334
+
335
+ model_name = ""
336
+
337
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, padding_side='left')
338
+ model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True,
339
+ torch_dtype=torch.bfloat16,
340
+ attn_implementation="flash_attention_2" # we recommend using flash attention
341
+ ).to("cuda")
342
+ ```
343
+
344
+ Simple 0-shot text-only example:
345
+ ```python
346
+ template = """{"names": ["verbatim-string"]}"""
347
+ text = "John went to the restaurant with Mary. James went to the cinema."
348
+
349
+ input_messages = [construct_message(text, template)]
350
+
351
+ input_content = prepare_inputs(
352
+ messages=input_messages,
353
+ image_paths=[],
354
+ tokenizer=tokenizer,
355
+ )
356
+
357
+ generation_config = {"do_sample": False, "num_beams": 1, "max_new_tokens": 2048}
358
+
359
+ with torch.no_grad():
360
+ result = nuextract_generate(
361
+ model=model,
362
+ tokenizer=tokenizer,
363
+ prompts=input_content['prompts'],
364
+ pixel_values_list=input_content['pixel_values_list'],
365
+ num_patches_list=input_content['num_patches_list'],
366
+ generation_config=generation_config
367
+ )
368
+ for y in result:
369
+ print(y)
370
+ # {"names": ["John", "Mary", "James"]}
371
+ ```
372
+
373
+ Text-only input with an in-context example:
374
+ ```python
375
+ template = """{"names": ["verbatim-string"], "female_names": ["verbatim-string"]}"""
376
+ text = "John went to the restaurant with Mary. James went to the cinema."
377
+ examples = [
378
+ {
379
+ "input": "Stephen is the manager at Susan's store.",
380
+ "output": """{"names": ["STEPHEN", "SUSAN"], "female_names": ["SUSAN"]}"""
381
+ }
382
+ ]
383
+
384
+ input_messages = [construct_message(text, template, examples)]
385
+
386
+ input_content = prepare_inputs(
387
+ messages=input_messages,
388
+ image_paths=[],
389
+ tokenizer=tokenizer,
390
+ )
391
+
392
+ generation_config = {"do_sample": False, "num_beams": 1, "max_new_tokens": 2048}
393
+
394
+ with torch.no_grad():
395
+ result = nuextract_generate(
396
+ model=model,
397
+ tokenizer=tokenizer,
398
+ prompts=input_content['prompts'],
399
+ pixel_values_list=input_content['pixel_values_list'],
400
+ num_patches_list=input_content['num_patches_list'],
401
+ generation_config=generation_config
402
+ )
403
+ for y in result:
404
+ print(y)
405
+ # {"names": ["JOHN", "MARY", "JAMES"], "female_names": ["MARY"]}
406
+ ```
407
+
408
+ Example with image input and an in-context example. Image inputs should use `<image>` placeholder instead of text and image paths should be provided in a list in order of appearance in the prompt (in this example `0.jpg` will be for the in-context example and `1.jpg` for the true input).
409
+ ```python
410
+ template = """{"store": "verbatim-string"}"""
411
+ text = "<image>"
412
+ examples = [
413
+ {
414
+ "input": "<image>",
415
+ "output": """{"store": "Walmart"}"""
416
+ }
417
+ ]
418
+
419
+ input_messages = [construct_message(text, template, examples)]
420
+
421
+ images = [
422
+ ["0.jpg", "1.jpg"]
423
+ ]
424
+
425
+ input_content = prepare_inputs(
426
+ messages=input_messages,
427
+ image_paths=images,
428
+ tokenizer=tokenizer,
429
+ )
430
+
431
+ generation_config = {"do_sample": False, "num_beams": 1, "max_new_tokens": 2048}
432
+
433
+ with torch.no_grad():
434
+ result = nuextract_generate(
435
+ model=model,
436
+ tokenizer=tokenizer,
437
+ prompts=input_content['prompts'],
438
+ pixel_values_list=input_content['pixel_values_list'],
439
+ num_patches_list=input_content['num_patches_list'],
440
+ generation_config=generation_config
441
+ )
442
+ for y in result:
443
+ print(y)
444
+ # {"store": "Trader Joe's"}
445
+ ```
446
+
447
+ Multi-modal batched input:
448
+ ```python
449
+ inputs = [
450
+ # image input with no ICL examples
451
+ {
452
+ "text": "<image>",
453
+ "template": """{"store_name": "verbatim-string"}""",
454
+ "examples": None,
455
+ },
456
+ # image input with 1 ICL example
457
+ {
458
+ "text": "<image>",
459
+ "template": """{"store_name": "verbatim-string"}""",
460
+ "examples": [
461
+ {
462
+ "input": "<image>",
463
+ "output": """{"store_name": "Walmart"}""",
464
+ }
465
+ ],
466
+ },
467
+ # text input with no ICL examples
468
+ {
469
+ "text": "John went to the restaurant with Mary. James went to the cinema.",
470
+ "template": """{"names": ["verbatim-string"]}""",
471
+ "examples": None,
472
+ },
473
+ # text input with ICL example
474
+ {
475
+ "text": "John went to the restaurant with Mary. James went to the cinema.",
476
+ "template": """{"names": ["verbatim-string"], "female_names": ["verbatim-string"]}""",
477
+ "examples": [
478
+ {
479
+ "input": "Stephen is the manager at Susan's store.",
480
+ "output": """{"names": ["STEPHEN", "SUSAN"], "female_names": ["SUSAN"]}"""
481
+ }
482
+ ],
483
+ },
484
+ ]
485
+
486
+ input_messages = [
487
+ construct_message(
488
+ x["text"],
489
+ x["template"],
490
+ x["examples"]
491
+ ) for x in inputs
492
+ ]
493
+
494
+ images = [
495
+ ["0.jpg"],
496
+ ["0.jpg", "1.jpg"],
497
+ None,
498
+ None
499
+ ]
500
+
501
+ input_content = prepare_inputs(
502
+ messages=input_messages,
503
+ image_paths=images,
504
+ tokenizer=tokenizer,
505
+ )
506
+
507
+ generation_config = {"do_sample": False, "num_beams": 1, "max_new_tokens": 2048}
508
+
509
+ with torch.no_grad():
510
+ result = nuextract_generate(
511
+ model=model,
512
+ tokenizer=tokenizer,
513
+ prompts=input_content['prompts'],
514
+ pixel_values_list=input_content['pixel_values_list'],
515
+ num_patches_list=input_content['num_patches_list'],
516
+ generation_config=generation_config
517
+ )
518
+ for y in result:
519
+ print(y)
520
+ # {"store_name": "WAL*MART"}
521
+ # {"store_name": "Trader Joe's"}
522
+ # {"names": ["John", "Mary", "James"]}
523
+ # {"names": ["JOHN", "MARY", "JAMES"], "female_names": ["MARY"]}
524
+ ```
added_tokens.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 151673,
3
+ "</img>": 151666,
4
+ "</quad>": 151669,
5
+ "</ref>": 151671,
6
+ "</tool_call>": 151658,
7
+ "<IMG_CONTEXT>": 151667,
8
+ "<box>": 151672,
9
+ "<img>": 151665,
10
+ "<quad>": 151668,
11
+ "<ref>": 151670,
12
+ "<tool_call>": 151657,
13
+ "<|box_end|>": 151649,
14
+ "<|box_start|>": 151648,
15
+ "<|endoftext|>": 151643,
16
+ "<|file_sep|>": 151664,
17
+ "<|fim_middle|>": 151660,
18
+ "<|fim_pad|>": 151662,
19
+ "<|fim_prefix|>": 151659,
20
+ "<|fim_suffix|>": 151661,
21
+ "<|im_end|>": 151645,
22
+ "<|im_start|>": 151644,
23
+ "<|image_pad|>": 151655,
24
+ "<|object_ref_end|>": 151647,
25
+ "<|object_ref_start|>": 151646,
26
+ "<|quad_end|>": 151651,
27
+ "<|quad_start|>": 151650,
28
+ "<|repo_name|>": 151663,
29
+ "<|video_pad|>": 151656,
30
+ "<|vision_end|>": 151653,
31
+ "<|vision_pad|>": 151654,
32
+ "<|vision_start|>": 151652
33
+ }
config.json ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "_name_or_path": "experiments/intervl4B_filter/checkpoint-6000",
4
+ "architectures": [
5
+ "InternVLChatModel"
6
+ ],
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
9
+ "AutoModel": "OpenGVLab/InternVL2_5-4B-MPO--modeling_internvl_chat.InternVLChatModel",
10
+ "AutoModelForCausalLM": "OpenGVLab/InternVL2_5-4B-MPO--modeling_internvl_chat.InternVLChatModel"
11
+ },
12
+ "downsample_ratio": 0.5,
13
+ "dynamic_image_size": true,
14
+ "force_image_size": 448,
15
+ "llm_config": {
16
+ "_attn_implementation_autoset": true,
17
+ "_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
18
+ "add_cross_attention": false,
19
+ "architectures": [
20
+ "Qwen2ForCausalLM"
21
+ ],
22
+ "attention_dropout": 0.0,
23
+ "bad_words_ids": null,
24
+ "begin_suppress_tokens": null,
25
+ "bos_token_id": 151643,
26
+ "chunk_size_feed_forward": 0,
27
+ "cross_attention_hidden_size": null,
28
+ "decoder_start_token_id": null,
29
+ "diversity_penalty": 0.0,
30
+ "do_sample": false,
31
+ "early_stopping": false,
32
+ "encoder_no_repeat_ngram_size": 0,
33
+ "eos_token_id": 151645,
34
+ "exponential_decay_length_penalty": null,
35
+ "finetuning_task": null,
36
+ "forced_bos_token_id": null,
37
+ "forced_eos_token_id": null,
38
+ "hidden_act": "silu",
39
+ "hidden_size": 2048,
40
+ "id2label": {
41
+ "0": "LABEL_0",
42
+ "1": "LABEL_1"
43
+ },
44
+ "initializer_range": 0.02,
45
+ "intermediate_size": 11008,
46
+ "is_decoder": false,
47
+ "is_encoder_decoder": false,
48
+ "label2id": {
49
+ "LABEL_0": 0,
50
+ "LABEL_1": 1
51
+ },
52
+ "length_penalty": 1.0,
53
+ "max_length": 20,
54
+ "max_position_embeddings": 32768,
55
+ "max_window_layers": 70,
56
+ "min_length": 0,
57
+ "model_type": "qwen2",
58
+ "no_repeat_ngram_size": 0,
59
+ "num_attention_heads": 16,
60
+ "num_beam_groups": 1,
61
+ "num_beams": 1,
62
+ "num_hidden_layers": 36,
63
+ "num_key_value_heads": 2,
64
+ "num_return_sequences": 1,
65
+ "output_attentions": false,
66
+ "output_hidden_states": false,
67
+ "output_scores": false,
68
+ "pad_token_id": null,
69
+ "prefix": null,
70
+ "problem_type": null,
71
+ "pruned_heads": {},
72
+ "remove_invalid_values": false,
73
+ "repetition_penalty": 1.0,
74
+ "return_dict": true,
75
+ "return_dict_in_generate": false,
76
+ "rms_norm_eps": 1e-06,
77
+ "rope_scaling": null,
78
+ "rope_theta": 1000000.0,
79
+ "sep_token_id": null,
80
+ "sliding_window": null,
81
+ "suppress_tokens": null,
82
+ "task_specific_params": null,
83
+ "temperature": 1.0,
84
+ "tf_legacy_loss": false,
85
+ "tie_encoder_decoder": false,
86
+ "tie_word_embeddings": false,
87
+ "tokenizer_class": null,
88
+ "top_k": 50,
89
+ "top_p": 1.0,
90
+ "torch_dtype": "bfloat16",
91
+ "torchscript": false,
92
+ "transformers_version": "4.49.0.dev0",
93
+ "typical_p": 1.0,
94
+ "use_bfloat16": true,
95
+ "use_cache": true,
96
+ "use_sliding_window": false,
97
+ "vocab_size": 151674
98
+ },
99
+ "max_dynamic_patch": 12,
100
+ "min_dynamic_patch": 1,
101
+ "model_type": "internvl_chat",
102
+ "ps_version": "v2",
103
+ "select_layer": -1,
104
+ "template": "internvl2_5",
105
+ "torch_dtype": "bfloat16",
106
+ "transformers_version": null,
107
+ "use_backbone_lora": 0,
108
+ "use_llm_lora": 0,
109
+ "use_thumbnail": true,
110
+ "vision_config": {
111
+ "_attn_implementation_autoset": true,
112
+ "_name_or_path": "",
113
+ "add_cross_attention": false,
114
+ "architectures": [
115
+ "InternVisionModel"
116
+ ],
117
+ "attention_dropout": 0.0,
118
+ "bad_words_ids": null,
119
+ "begin_suppress_tokens": null,
120
+ "bos_token_id": null,
121
+ "chunk_size_feed_forward": 0,
122
+ "cross_attention_hidden_size": null,
123
+ "decoder_start_token_id": null,
124
+ "diversity_penalty": 0.0,
125
+ "do_sample": false,
126
+ "drop_path_rate": 0.0,
127
+ "dropout": 0.0,
128
+ "early_stopping": false,
129
+ "encoder_no_repeat_ngram_size": 0,
130
+ "eos_token_id": null,
131
+ "exponential_decay_length_penalty": null,
132
+ "finetuning_task": null,
133
+ "forced_bos_token_id": null,
134
+ "forced_eos_token_id": null,
135
+ "hidden_act": "gelu",
136
+ "hidden_size": 1024,
137
+ "id2label": {
138
+ "0": "LABEL_0",
139
+ "1": "LABEL_1"
140
+ },
141
+ "image_size": 448,
142
+ "initializer_factor": 1.0,
143
+ "initializer_range": 0.02,
144
+ "intermediate_size": 4096,
145
+ "is_decoder": false,
146
+ "is_encoder_decoder": false,
147
+ "label2id": {
148
+ "LABEL_0": 0,
149
+ "LABEL_1": 1
150
+ },
151
+ "layer_norm_eps": 1e-06,
152
+ "length_penalty": 1.0,
153
+ "max_length": 20,
154
+ "min_length": 0,
155
+ "model_type": "intern_vit_6b",
156
+ "no_repeat_ngram_size": 0,
157
+ "norm_type": "layer_norm",
158
+ "num_attention_heads": 16,
159
+ "num_beam_groups": 1,
160
+ "num_beams": 1,
161
+ "num_channels": 3,
162
+ "num_hidden_layers": 24,
163
+ "num_return_sequences": 1,
164
+ "output_attentions": false,
165
+ "output_hidden_states": false,
166
+ "output_scores": false,
167
+ "pad_token_id": null,
168
+ "patch_size": 14,
169
+ "prefix": null,
170
+ "problem_type": null,
171
+ "pruned_heads": {},
172
+ "qk_normalization": false,
173
+ "qkv_bias": true,
174
+ "remove_invalid_values": false,
175
+ "repetition_penalty": 1.0,
176
+ "return_dict": true,
177
+ "return_dict_in_generate": false,
178
+ "sep_token_id": null,
179
+ "suppress_tokens": null,
180
+ "task_specific_params": null,
181
+ "temperature": 1.0,
182
+ "tf_legacy_loss": false,
183
+ "tie_encoder_decoder": false,
184
+ "tie_word_embeddings": true,
185
+ "tokenizer_class": null,
186
+ "top_k": 50,
187
+ "top_p": 1.0,
188
+ "torch_dtype": "bfloat16",
189
+ "torchscript": false,
190
+ "transformers_version": "4.49.0.dev0",
191
+ "typical_p": 1.0,
192
+ "use_bfloat16": true,
193
+ "use_flash_attn": true
194
+ }
195
+ }
configuration_intern_vit.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import os
8
+ from typing import Union
9
+
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ logger = logging.get_logger(__name__)
14
+
15
+
16
+ class InternVisionConfig(PretrainedConfig):
17
+ r"""
18
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
19
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
20
+
21
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
22
+ documentation from [`PretrainedConfig`] for more information.
23
+
24
+ Args:
25
+ num_channels (`int`, *optional*, defaults to 3):
26
+ Number of color channels in the input images (e.g., 3 for RGB).
27
+ patch_size (`int`, *optional*, defaults to 14):
28
+ The size (resolution) of each patch.
29
+ image_size (`int`, *optional*, defaults to 224):
30
+ The size (resolution) of each image.
31
+ qkv_bias (`bool`, *optional*, defaults to `False`):
32
+ Whether to add a bias to the queries and values in the self-attention layers.
33
+ hidden_size (`int`, *optional*, defaults to 3200):
34
+ Dimensionality of the encoder layers and the pooler layer.
35
+ num_attention_heads (`int`, *optional*, defaults to 25):
36
+ Number of attention heads for each attention layer in the Transformer encoder.
37
+ intermediate_size (`int`, *optional*, defaults to 12800):
38
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
39
+ qk_normalization (`bool`, *optional*, defaults to `True`):
40
+ Whether to normalize the queries and keys in the self-attention layers.
41
+ num_hidden_layers (`int`, *optional*, defaults to 48):
42
+ Number of hidden layers in the Transformer encoder.
43
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
44
+ Whether to use flash attention mechanism.
45
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
46
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
47
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
48
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
49
+ The epsilon used by the layer normalization layers.
50
+ dropout (`float`, *optional*, defaults to 0.0):
51
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
52
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
53
+ Dropout rate for stochastic depth.
54
+ attention_dropout (`float`, *optional*, defaults to 0.0):
55
+ The dropout ratio for the attention probabilities.
56
+ initializer_range (`float`, *optional*, defaults to 0.02):
57
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
58
+ initializer_factor (`float`, *optional*, defaults to 0.1):
59
+ A factor for layer scale.
60
+ """
61
+
62
+ model_type = 'intern_vit_6b'
63
+
64
+ def __init__(
65
+ self,
66
+ num_channels=3,
67
+ patch_size=14,
68
+ image_size=224,
69
+ qkv_bias=False,
70
+ hidden_size=3200,
71
+ num_attention_heads=25,
72
+ intermediate_size=12800,
73
+ qk_normalization=True,
74
+ num_hidden_layers=48,
75
+ use_flash_attn=True,
76
+ hidden_act='gelu',
77
+ norm_type='rms_norm',
78
+ layer_norm_eps=1e-6,
79
+ dropout=0.0,
80
+ drop_path_rate=0.0,
81
+ attention_dropout=0.0,
82
+ initializer_range=0.02,
83
+ initializer_factor=0.1,
84
+ **kwargs,
85
+ ):
86
+ super().__init__(**kwargs)
87
+
88
+ self.hidden_size = hidden_size
89
+ self.intermediate_size = intermediate_size
90
+ self.dropout = dropout
91
+ self.drop_path_rate = drop_path_rate
92
+ self.num_hidden_layers = num_hidden_layers
93
+ self.num_attention_heads = num_attention_heads
94
+ self.num_channels = num_channels
95
+ self.patch_size = patch_size
96
+ self.image_size = image_size
97
+ self.initializer_range = initializer_range
98
+ self.initializer_factor = initializer_factor
99
+ self.attention_dropout = attention_dropout
100
+ self.layer_norm_eps = layer_norm_eps
101
+ self.hidden_act = hidden_act
102
+ self.norm_type = norm_type
103
+ self.qkv_bias = qkv_bias
104
+ self.qk_normalization = qk_normalization
105
+ self.use_flash_attn = use_flash_attn
106
+
107
+ @classmethod
108
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
109
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
110
+
111
+ if 'vision_config' in config_dict:
112
+ config_dict = config_dict['vision_config']
113
+
114
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
115
+ logger.warning(
116
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
117
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
118
+ )
119
+
120
+ return cls.from_dict(config_dict, **kwargs)
configuration_internvl_chat.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+
9
+ from transformers import AutoConfig, LlamaConfig, Qwen2Config
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ from .configuration_intern_vit import InternVisionConfig
14
+
15
+ logger = logging.get_logger(__name__)
16
+
17
+
18
+ class InternVLChatConfig(PretrainedConfig):
19
+ model_type = 'internvl_chat'
20
+ is_composition = True
21
+
22
+ def __init__(
23
+ self,
24
+ vision_config=None,
25
+ llm_config=None,
26
+ use_backbone_lora=0,
27
+ use_llm_lora=0,
28
+ select_layer=-1,
29
+ force_image_size=None,
30
+ downsample_ratio=0.5,
31
+ template=None,
32
+ dynamic_image_size=False,
33
+ use_thumbnail=False,
34
+ ps_version='v1',
35
+ min_dynamic_patch=1,
36
+ max_dynamic_patch=6,
37
+ **kwargs):
38
+ super().__init__(**kwargs)
39
+
40
+ if vision_config is None:
41
+ vision_config = {'architectures': ['InternVisionModel']}
42
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
43
+
44
+ if llm_config is None:
45
+ llm_config = {'architectures': ['Qwen2ForCausalLM']}
46
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
47
+
48
+ self.vision_config = InternVisionConfig(**vision_config)
49
+ if llm_config.get('architectures')[0] == 'LlamaForCausalLM':
50
+ self.llm_config = LlamaConfig(**llm_config)
51
+ elif llm_config.get('architectures')[0] == 'Qwen2ForCausalLM':
52
+ self.llm_config = Qwen2Config(**llm_config)
53
+ else:
54
+ raise ValueError('Unsupported architecture: {}'.format(llm_config.get('architectures')[0]))
55
+ self.use_backbone_lora = use_backbone_lora
56
+ self.use_llm_lora = use_llm_lora
57
+ self.select_layer = select_layer
58
+ self.force_image_size = force_image_size
59
+ self.downsample_ratio = downsample_ratio
60
+ self.template = template
61
+ self.dynamic_image_size = dynamic_image_size
62
+ self.use_thumbnail = use_thumbnail
63
+ self.ps_version = ps_version # pixel shuffle version
64
+ self.min_dynamic_patch = min_dynamic_patch
65
+ self.max_dynamic_patch = max_dynamic_patch
66
+
67
+ logger.info(f'vision_select_layer: {self.select_layer}')
68
+ logger.info(f'ps_version: {self.ps_version}')
69
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
70
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
71
+
72
+ def to_dict(self):
73
+ """
74
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
75
+
76
+ Returns:
77
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
78
+ """
79
+ output = copy.deepcopy(self.__dict__)
80
+ output['vision_config'] = self.vision_config.to_dict()
81
+ output['llm_config'] = self.llm_config.to_dict()
82
+ output['model_type'] = self.__class__.model_type
83
+ output['use_backbone_lora'] = self.use_backbone_lora
84
+ output['use_llm_lora'] = self.use_llm_lora
85
+ output['select_layer'] = self.select_layer
86
+ output['force_image_size'] = self.force_image_size
87
+ output['downsample_ratio'] = self.downsample_ratio
88
+ output['template'] = self.template
89
+ output['dynamic_image_size'] = self.dynamic_image_size
90
+ output['use_thumbnail'] = self.use_thumbnail
91
+ output['ps_version'] = self.ps_version
92
+ output['min_dynamic_patch'] = self.min_dynamic_patch
93
+ output['max_dynamic_patch'] = self.max_dynamic_patch
94
+
95
+ return output
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "eos_token_id": [
4
+ 151644,
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "transformers_version": "4.49.0.dev0"
9
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0468f648c6c99010629f4604f5286abb27cee37b1e079fb142b48eb98468566
3
+ size 4993023560
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b68e1f2a5f56d507eff47c5c565e68abbd02a28bf1398b28a7892c259ed86b3
3
+ size 2432349168
model.safetensors.index.json ADDED
@@ -0,0 +1,788 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 7425275904
4
+ },
5
+ "weight_map": {
6
+ "language_model.lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "language_model.model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "language_model.model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
14
+ "language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
+ "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
+ "language_model.model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
17
+ "language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
18
+ "language_model.model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
19
+ "language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
+ "language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
+ "language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
+ "language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "language_model.model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
26
+ "language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
27
+ "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
28
+ "language_model.model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
29
+ "language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
30
+ "language_model.model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
31
+ "language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
32
+ "language_model.model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "language_model.model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "language_model.model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
35
+ "language_model.model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
36
+ "language_model.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
37
+ "language_model.model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
38
+ "language_model.model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
39
+ "language_model.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
40
+ "language_model.model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
41
+ "language_model.model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
+ "language_model.model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
43
+ "language_model.model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "language_model.model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "language_model.model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "language_model.model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "language_model.model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "language_model.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "language_model.model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
50
+ "language_model.model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
51
+ "language_model.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
+ "language_model.model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
53
+ "language_model.model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
+ "language_model.model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
55
+ "language_model.model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
+ "language_model.model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "language_model.model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "language_model.model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
59
+ "language_model.model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
60
+ "language_model.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "language_model.model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
62
+ "language_model.model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
+ "language_model.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
64
+ "language_model.model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
65
+ "language_model.model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
66
+ "language_model.model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
67
+ "language_model.model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
68
+ "language_model.model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "language_model.model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
+ "language_model.model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
71
+ "language_model.model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
72
+ "language_model.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "language_model.model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
+ "language_model.model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
+ "language_model.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
76
+ "language_model.model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
77
+ "language_model.model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
+ "language_model.model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
79
+ "language_model.model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "language_model.model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "language_model.model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "language_model.model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "language_model.model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "language_model.model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "language_model.model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
86
+ "language_model.model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
+ "language_model.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
88
+ "language_model.model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
89
+ "language_model.model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
90
+ "language_model.model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
91
+ "language_model.model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
92
+ "language_model.model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "language_model.model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
94
+ "language_model.model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
95
+ "language_model.model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
96
+ "language_model.model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
+ "language_model.model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
98
+ "language_model.model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
99
+ "language_model.model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
+ "language_model.model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
101
+ "language_model.model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
+ "language_model.model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
103
+ "language_model.model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
+ "language_model.model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
+ "language_model.model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
106
+ "language_model.model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
107
+ "language_model.model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
108
+ "language_model.model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
109
+ "language_model.model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
110
+ "language_model.model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
111
+ "language_model.model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
112
+ "language_model.model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
113
+ "language_model.model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
+ "language_model.model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
115
+ "language_model.model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "language_model.model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "language_model.model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "language_model.model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "language_model.model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "language_model.model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "language_model.model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
122
+ "language_model.model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
123
+ "language_model.model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
124
+ "language_model.model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
125
+ "language_model.model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
126
+ "language_model.model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
127
+ "language_model.model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "language_model.model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "language_model.model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "language_model.model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "language_model.model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "language_model.model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "language_model.model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
134
+ "language_model.model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
+ "language_model.model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
+ "language_model.model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
137
+ "language_model.model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "language_model.model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
139
+ "language_model.model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
140
+ "language_model.model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
141
+ "language_model.model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
142
+ "language_model.model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
143
+ "language_model.model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
144
+ "language_model.model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
145
+ "language_model.model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
146
+ "language_model.model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
+ "language_model.model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "language_model.model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
149
+ "language_model.model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "language_model.model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
151
+ "language_model.model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
+ "language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
+ "language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
+ "language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "language_model.model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
+ "language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
+ "language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
+ "language_model.model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
161
+ "language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
162
+ "language_model.model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
163
+ "language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
+ "language_model.model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "language_model.model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "language_model.model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
167
+ "language_model.model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
168
+ "language_model.model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "language_model.model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
170
+ "language_model.model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
171
+ "language_model.model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
172
+ "language_model.model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
173
+ "language_model.model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
174
+ "language_model.model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
175
+ "language_model.model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
176
+ "language_model.model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "language_model.model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
+ "language_model.model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
179
+ "language_model.model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
180
+ "language_model.model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
181
+ "language_model.model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
182
+ "language_model.model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
183
+ "language_model.model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
184
+ "language_model.model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
185
+ "language_model.model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
186
+ "language_model.model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
187
+ "language_model.model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
+ "language_model.model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "language_model.model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "language_model.model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
+ "language_model.model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
192
+ "language_model.model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
+ "language_model.model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
194
+ "language_model.model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
195
+ "language_model.model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
196
+ "language_model.model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
197
+ "language_model.model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
198
+ "language_model.model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
199
+ "language_model.model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
200
+ "language_model.model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
201
+ "language_model.model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
202
+ "language_model.model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
203
+ "language_model.model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
204
+ "language_model.model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
205
+ "language_model.model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
206
+ "language_model.model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
207
+ "language_model.model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
208
+ "language_model.model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
209
+ "language_model.model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
210
+ "language_model.model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
211
+ "language_model.model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
212
+ "language_model.model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
213
+ "language_model.model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
214
+ "language_model.model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
215
+ "language_model.model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
216
+ "language_model.model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
217
+ "language_model.model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
218
+ "language_model.model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
219
+ "language_model.model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
220
+ "language_model.model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
221
+ "language_model.model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
222
+ "language_model.model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
223
+ "language_model.model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "language_model.model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
225
+ "language_model.model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
226
+ "language_model.model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
227
+ "language_model.model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
228
+ "language_model.model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
229
+ "language_model.model.layers.25.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
230
+ "language_model.model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
231
+ "language_model.model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
232
+ "language_model.model.layers.25.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
233
+ "language_model.model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
234
+ "language_model.model.layers.25.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
235
+ "language_model.model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
236
+ "language_model.model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
237
+ "language_model.model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
238
+ "language_model.model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
239
+ "language_model.model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
240
+ "language_model.model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
241
+ "language_model.model.layers.26.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
242
+ "language_model.model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
243
+ "language_model.model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
244
+ "language_model.model.layers.26.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
245
+ "language_model.model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
246
+ "language_model.model.layers.26.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
247
+ "language_model.model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
248
+ "language_model.model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
249
+ "language_model.model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
250
+ "language_model.model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
251
+ "language_model.model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
252
+ "language_model.model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
253
+ "language_model.model.layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
254
+ "language_model.model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
255
+ "language_model.model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
256
+ "language_model.model.layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
257
+ "language_model.model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
258
+ "language_model.model.layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
259
+ "language_model.model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
260
+ "language_model.model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
261
+ "language_model.model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
262
+ "language_model.model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
263
+ "language_model.model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
264
+ "language_model.model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
265
+ "language_model.model.layers.28.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
266
+ "language_model.model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
267
+ "language_model.model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
268
+ "language_model.model.layers.28.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
269
+ "language_model.model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
270
+ "language_model.model.layers.28.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
271
+ "language_model.model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
272
+ "language_model.model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
273
+ "language_model.model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
274
+ "language_model.model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
275
+ "language_model.model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
276
+ "language_model.model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
277
+ "language_model.model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
278
+ "language_model.model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
279
+ "language_model.model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
280
+ "language_model.model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
281
+ "language_model.model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
282
+ "language_model.model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
283
+ "language_model.model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
284
+ "language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
285
+ "language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
286
+ "language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
287
+ "language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
288
+ "language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
289
+ "language_model.model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
290
+ "language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
291
+ "language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
292
+ "language_model.model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
293
+ "language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
294
+ "language_model.model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
295
+ "language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
+ "language_model.model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
+ "language_model.model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
298
+ "language_model.model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
299
+ "language_model.model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
300
+ "language_model.model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
301
+ "language_model.model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
302
+ "language_model.model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
303
+ "language_model.model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
304
+ "language_model.model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
305
+ "language_model.model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
+ "language_model.model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
307
+ "language_model.model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
308
+ "language_model.model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
309
+ "language_model.model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
310
+ "language_model.model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
311
+ "language_model.model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
312
+ "language_model.model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
313
+ "language_model.model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
314
+ "language_model.model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
315
+ "language_model.model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
316
+ "language_model.model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
317
+ "language_model.model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
318
+ "language_model.model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
319
+ "language_model.model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
320
+ "language_model.model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
+ "language_model.model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
+ "language_model.model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
+ "language_model.model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
+ "language_model.model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
+ "language_model.model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
326
+ "language_model.model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
327
+ "language_model.model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
328
+ "language_model.model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
329
+ "language_model.model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
330
+ "language_model.model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
331
+ "language_model.model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
+ "language_model.model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
+ "language_model.model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
+ "language_model.model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
+ "language_model.model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
+ "language_model.model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
+ "language_model.model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
338
+ "language_model.model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
339
+ "language_model.model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
340
+ "language_model.model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
341
+ "language_model.model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
342
+ "language_model.model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
343
+ "language_model.model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
344
+ "language_model.model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
345
+ "language_model.model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
346
+ "language_model.model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
347
+ "language_model.model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
348
+ "language_model.model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
349
+ "language_model.model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
350
+ "language_model.model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
351
+ "language_model.model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
352
+ "language_model.model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
353
+ "language_model.model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
354
+ "language_model.model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
355
+ "language_model.model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
356
+ "language_model.model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
357
+ "language_model.model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
358
+ "language_model.model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
359
+ "language_model.model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
360
+ "language_model.model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
361
+ "language_model.model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
362
+ "language_model.model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
363
+ "language_model.model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
364
+ "language_model.model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
365
+ "language_model.model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
366
+ "language_model.model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
367
+ "language_model.model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
368
+ "language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
369
+ "language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
370
+ "language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
371
+ "language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
372
+ "language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
373
+ "language_model.model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
374
+ "language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
375
+ "language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
376
+ "language_model.model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
377
+ "language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
378
+ "language_model.model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
379
+ "language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
380
+ "language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
381
+ "language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
382
+ "language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
383
+ "language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
384
+ "language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
385
+ "language_model.model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
386
+ "language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
387
+ "language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
388
+ "language_model.model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
389
+ "language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
390
+ "language_model.model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
391
+ "language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
+ "language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
393
+ "language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
394
+ "language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
395
+ "language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
396
+ "language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
397
+ "language_model.model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
398
+ "language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
399
+ "language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
400
+ "language_model.model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
401
+ "language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
402
+ "language_model.model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
403
+ "language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
404
+ "language_model.model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
405
+ "language_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
406
+ "language_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
407
+ "language_model.model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
408
+ "language_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
409
+ "language_model.model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
410
+ "language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
411
+ "language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
412
+ "language_model.model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
413
+ "language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
414
+ "language_model.model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
415
+ "language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
416
+ "language_model.model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "language_model.model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
418
+ "language_model.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
419
+ "language_model.model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
420
+ "language_model.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
421
+ "language_model.model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
422
+ "language_model.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
423
+ "language_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
424
+ "language_model.model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
425
+ "language_model.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
426
+ "language_model.model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
427
+ "language_model.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
428
+ "language_model.model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
429
+ "language_model.model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
430
+ "language_model.model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
431
+ "language_model.model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
432
+ "language_model.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
433
+ "language_model.model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
434
+ "language_model.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
435
+ "language_model.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
436
+ "language_model.model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
437
+ "language_model.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
438
+ "language_model.model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
439
+ "language_model.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
+ "language_model.model.norm.weight": "model-00002-of-00002.safetensors",
441
+ "mlp1.0.bias": "model-00002-of-00002.safetensors",
442
+ "mlp1.0.weight": "model-00002-of-00002.safetensors",
443
+ "mlp1.1.bias": "model-00002-of-00002.safetensors",
444
+ "mlp1.1.weight": "model-00002-of-00002.safetensors",
445
+ "mlp1.3.bias": "model-00002-of-00002.safetensors",
446
+ "mlp1.3.weight": "model-00002-of-00002.safetensors",
447
+ "vision_model.embeddings.class_embedding": "model-00001-of-00002.safetensors",
448
+ "vision_model.embeddings.patch_embedding.bias": "model-00001-of-00002.safetensors",
449
+ "vision_model.embeddings.patch_embedding.weight": "model-00001-of-00002.safetensors",
450
+ "vision_model.embeddings.position_embedding": "model-00001-of-00002.safetensors",
451
+ "vision_model.encoder.layers.0.attn.proj.bias": "model-00001-of-00002.safetensors",
452
+ "vision_model.encoder.layers.0.attn.proj.weight": "model-00001-of-00002.safetensors",
453
+ "vision_model.encoder.layers.0.attn.qkv.bias": "model-00001-of-00002.safetensors",
454
+ "vision_model.encoder.layers.0.attn.qkv.weight": "model-00001-of-00002.safetensors",
455
+ "vision_model.encoder.layers.0.ls1": "model-00001-of-00002.safetensors",
456
+ "vision_model.encoder.layers.0.ls2": "model-00001-of-00002.safetensors",
457
+ "vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
458
+ "vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
459
+ "vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
460
+ "vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
461
+ "vision_model.encoder.layers.0.norm1.bias": "model-00001-of-00002.safetensors",
462
+ "vision_model.encoder.layers.0.norm1.weight": "model-00001-of-00002.safetensors",
463
+ "vision_model.encoder.layers.0.norm2.bias": "model-00001-of-00002.safetensors",
464
+ "vision_model.encoder.layers.0.norm2.weight": "model-00001-of-00002.safetensors",
465
+ "vision_model.encoder.layers.1.attn.proj.bias": "model-00001-of-00002.safetensors",
466
+ "vision_model.encoder.layers.1.attn.proj.weight": "model-00001-of-00002.safetensors",
467
+ "vision_model.encoder.layers.1.attn.qkv.bias": "model-00001-of-00002.safetensors",
468
+ "vision_model.encoder.layers.1.attn.qkv.weight": "model-00001-of-00002.safetensors",
469
+ "vision_model.encoder.layers.1.ls1": "model-00001-of-00002.safetensors",
470
+ "vision_model.encoder.layers.1.ls2": "model-00001-of-00002.safetensors",
471
+ "vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
472
+ "vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
473
+ "vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
474
+ "vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
475
+ "vision_model.encoder.layers.1.norm1.bias": "model-00001-of-00002.safetensors",
476
+ "vision_model.encoder.layers.1.norm1.weight": "model-00001-of-00002.safetensors",
477
+ "vision_model.encoder.layers.1.norm2.bias": "model-00001-of-00002.safetensors",
478
+ "vision_model.encoder.layers.1.norm2.weight": "model-00001-of-00002.safetensors",
479
+ "vision_model.encoder.layers.10.attn.proj.bias": "model-00001-of-00002.safetensors",
480
+ "vision_model.encoder.layers.10.attn.proj.weight": "model-00001-of-00002.safetensors",
481
+ "vision_model.encoder.layers.10.attn.qkv.bias": "model-00001-of-00002.safetensors",
482
+ "vision_model.encoder.layers.10.attn.qkv.weight": "model-00001-of-00002.safetensors",
483
+ "vision_model.encoder.layers.10.ls1": "model-00001-of-00002.safetensors",
484
+ "vision_model.encoder.layers.10.ls2": "model-00001-of-00002.safetensors",
485
+ "vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
486
+ "vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
487
+ "vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
488
+ "vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
489
+ "vision_model.encoder.layers.10.norm1.bias": "model-00001-of-00002.safetensors",
490
+ "vision_model.encoder.layers.10.norm1.weight": "model-00001-of-00002.safetensors",
491
+ "vision_model.encoder.layers.10.norm2.bias": "model-00001-of-00002.safetensors",
492
+ "vision_model.encoder.layers.10.norm2.weight": "model-00001-of-00002.safetensors",
493
+ "vision_model.encoder.layers.11.attn.proj.bias": "model-00001-of-00002.safetensors",
494
+ "vision_model.encoder.layers.11.attn.proj.weight": "model-00001-of-00002.safetensors",
495
+ "vision_model.encoder.layers.11.attn.qkv.bias": "model-00001-of-00002.safetensors",
496
+ "vision_model.encoder.layers.11.attn.qkv.weight": "model-00001-of-00002.safetensors",
497
+ "vision_model.encoder.layers.11.ls1": "model-00001-of-00002.safetensors",
498
+ "vision_model.encoder.layers.11.ls2": "model-00001-of-00002.safetensors",
499
+ "vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
500
+ "vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
501
+ "vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
502
+ "vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
503
+ "vision_model.encoder.layers.11.norm1.bias": "model-00001-of-00002.safetensors",
504
+ "vision_model.encoder.layers.11.norm1.weight": "model-00001-of-00002.safetensors",
505
+ "vision_model.encoder.layers.11.norm2.bias": "model-00001-of-00002.safetensors",
506
+ "vision_model.encoder.layers.11.norm2.weight": "model-00001-of-00002.safetensors",
507
+ "vision_model.encoder.layers.12.attn.proj.bias": "model-00001-of-00002.safetensors",
508
+ "vision_model.encoder.layers.12.attn.proj.weight": "model-00001-of-00002.safetensors",
509
+ "vision_model.encoder.layers.12.attn.qkv.bias": "model-00001-of-00002.safetensors",
510
+ "vision_model.encoder.layers.12.attn.qkv.weight": "model-00001-of-00002.safetensors",
511
+ "vision_model.encoder.layers.12.ls1": "model-00001-of-00002.safetensors",
512
+ "vision_model.encoder.layers.12.ls2": "model-00001-of-00002.safetensors",
513
+ "vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
514
+ "vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
515
+ "vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
516
+ "vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
517
+ "vision_model.encoder.layers.12.norm1.bias": "model-00001-of-00002.safetensors",
518
+ "vision_model.encoder.layers.12.norm1.weight": "model-00001-of-00002.safetensors",
519
+ "vision_model.encoder.layers.12.norm2.bias": "model-00001-of-00002.safetensors",
520
+ "vision_model.encoder.layers.12.norm2.weight": "model-00001-of-00002.safetensors",
521
+ "vision_model.encoder.layers.13.attn.proj.bias": "model-00001-of-00002.safetensors",
522
+ "vision_model.encoder.layers.13.attn.proj.weight": "model-00001-of-00002.safetensors",
523
+ "vision_model.encoder.layers.13.attn.qkv.bias": "model-00001-of-00002.safetensors",
524
+ "vision_model.encoder.layers.13.attn.qkv.weight": "model-00001-of-00002.safetensors",
525
+ "vision_model.encoder.layers.13.ls1": "model-00001-of-00002.safetensors",
526
+ "vision_model.encoder.layers.13.ls2": "model-00001-of-00002.safetensors",
527
+ "vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
528
+ "vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
529
+ "vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
530
+ "vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
531
+ "vision_model.encoder.layers.13.norm1.bias": "model-00001-of-00002.safetensors",
532
+ "vision_model.encoder.layers.13.norm1.weight": "model-00001-of-00002.safetensors",
533
+ "vision_model.encoder.layers.13.norm2.bias": "model-00001-of-00002.safetensors",
534
+ "vision_model.encoder.layers.13.norm2.weight": "model-00001-of-00002.safetensors",
535
+ "vision_model.encoder.layers.14.attn.proj.bias": "model-00001-of-00002.safetensors",
536
+ "vision_model.encoder.layers.14.attn.proj.weight": "model-00001-of-00002.safetensors",
537
+ "vision_model.encoder.layers.14.attn.qkv.bias": "model-00001-of-00002.safetensors",
538
+ "vision_model.encoder.layers.14.attn.qkv.weight": "model-00001-of-00002.safetensors",
539
+ "vision_model.encoder.layers.14.ls1": "model-00001-of-00002.safetensors",
540
+ "vision_model.encoder.layers.14.ls2": "model-00001-of-00002.safetensors",
541
+ "vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
542
+ "vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
543
+ "vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
544
+ "vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
545
+ "vision_model.encoder.layers.14.norm1.bias": "model-00001-of-00002.safetensors",
546
+ "vision_model.encoder.layers.14.norm1.weight": "model-00001-of-00002.safetensors",
547
+ "vision_model.encoder.layers.14.norm2.bias": "model-00001-of-00002.safetensors",
548
+ "vision_model.encoder.layers.14.norm2.weight": "model-00001-of-00002.safetensors",
549
+ "vision_model.encoder.layers.15.attn.proj.bias": "model-00001-of-00002.safetensors",
550
+ "vision_model.encoder.layers.15.attn.proj.weight": "model-00001-of-00002.safetensors",
551
+ "vision_model.encoder.layers.15.attn.qkv.bias": "model-00001-of-00002.safetensors",
552
+ "vision_model.encoder.layers.15.attn.qkv.weight": "model-00001-of-00002.safetensors",
553
+ "vision_model.encoder.layers.15.ls1": "model-00001-of-00002.safetensors",
554
+ "vision_model.encoder.layers.15.ls2": "model-00001-of-00002.safetensors",
555
+ "vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
556
+ "vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
557
+ "vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
558
+ "vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
559
+ "vision_model.encoder.layers.15.norm1.bias": "model-00001-of-00002.safetensors",
560
+ "vision_model.encoder.layers.15.norm1.weight": "model-00001-of-00002.safetensors",
561
+ "vision_model.encoder.layers.15.norm2.bias": "model-00001-of-00002.safetensors",
562
+ "vision_model.encoder.layers.15.norm2.weight": "model-00001-of-00002.safetensors",
563
+ "vision_model.encoder.layers.16.attn.proj.bias": "model-00001-of-00002.safetensors",
564
+ "vision_model.encoder.layers.16.attn.proj.weight": "model-00001-of-00002.safetensors",
565
+ "vision_model.encoder.layers.16.attn.qkv.bias": "model-00001-of-00002.safetensors",
566
+ "vision_model.encoder.layers.16.attn.qkv.weight": "model-00001-of-00002.safetensors",
567
+ "vision_model.encoder.layers.16.ls1": "model-00001-of-00002.safetensors",
568
+ "vision_model.encoder.layers.16.ls2": "model-00001-of-00002.safetensors",
569
+ "vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
570
+ "vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
571
+ "vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
572
+ "vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
573
+ "vision_model.encoder.layers.16.norm1.bias": "model-00001-of-00002.safetensors",
574
+ "vision_model.encoder.layers.16.norm1.weight": "model-00001-of-00002.safetensors",
575
+ "vision_model.encoder.layers.16.norm2.bias": "model-00001-of-00002.safetensors",
576
+ "vision_model.encoder.layers.16.norm2.weight": "model-00001-of-00002.safetensors",
577
+ "vision_model.encoder.layers.17.attn.proj.bias": "model-00001-of-00002.safetensors",
578
+ "vision_model.encoder.layers.17.attn.proj.weight": "model-00001-of-00002.safetensors",
579
+ "vision_model.encoder.layers.17.attn.qkv.bias": "model-00001-of-00002.safetensors",
580
+ "vision_model.encoder.layers.17.attn.qkv.weight": "model-00001-of-00002.safetensors",
581
+ "vision_model.encoder.layers.17.ls1": "model-00001-of-00002.safetensors",
582
+ "vision_model.encoder.layers.17.ls2": "model-00001-of-00002.safetensors",
583
+ "vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
584
+ "vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
585
+ "vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
586
+ "vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
587
+ "vision_model.encoder.layers.17.norm1.bias": "model-00001-of-00002.safetensors",
588
+ "vision_model.encoder.layers.17.norm1.weight": "model-00001-of-00002.safetensors",
589
+ "vision_model.encoder.layers.17.norm2.bias": "model-00001-of-00002.safetensors",
590
+ "vision_model.encoder.layers.17.norm2.weight": "model-00001-of-00002.safetensors",
591
+ "vision_model.encoder.layers.18.attn.proj.bias": "model-00001-of-00002.safetensors",
592
+ "vision_model.encoder.layers.18.attn.proj.weight": "model-00001-of-00002.safetensors",
593
+ "vision_model.encoder.layers.18.attn.qkv.bias": "model-00001-of-00002.safetensors",
594
+ "vision_model.encoder.layers.18.attn.qkv.weight": "model-00001-of-00002.safetensors",
595
+ "vision_model.encoder.layers.18.ls1": "model-00001-of-00002.safetensors",
596
+ "vision_model.encoder.layers.18.ls2": "model-00001-of-00002.safetensors",
597
+ "vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
598
+ "vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
599
+ "vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
600
+ "vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
601
+ "vision_model.encoder.layers.18.norm1.bias": "model-00001-of-00002.safetensors",
602
+ "vision_model.encoder.layers.18.norm1.weight": "model-00001-of-00002.safetensors",
603
+ "vision_model.encoder.layers.18.norm2.bias": "model-00001-of-00002.safetensors",
604
+ "vision_model.encoder.layers.18.norm2.weight": "model-00001-of-00002.safetensors",
605
+ "vision_model.encoder.layers.19.attn.proj.bias": "model-00001-of-00002.safetensors",
606
+ "vision_model.encoder.layers.19.attn.proj.weight": "model-00001-of-00002.safetensors",
607
+ "vision_model.encoder.layers.19.attn.qkv.bias": "model-00001-of-00002.safetensors",
608
+ "vision_model.encoder.layers.19.attn.qkv.weight": "model-00001-of-00002.safetensors",
609
+ "vision_model.encoder.layers.19.ls1": "model-00001-of-00002.safetensors",
610
+ "vision_model.encoder.layers.19.ls2": "model-00001-of-00002.safetensors",
611
+ "vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
612
+ "vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
613
+ "vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
614
+ "vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
615
+ "vision_model.encoder.layers.19.norm1.bias": "model-00001-of-00002.safetensors",
616
+ "vision_model.encoder.layers.19.norm1.weight": "model-00001-of-00002.safetensors",
617
+ "vision_model.encoder.layers.19.norm2.bias": "model-00001-of-00002.safetensors",
618
+ "vision_model.encoder.layers.19.norm2.weight": "model-00001-of-00002.safetensors",
619
+ "vision_model.encoder.layers.2.attn.proj.bias": "model-00001-of-00002.safetensors",
620
+ "vision_model.encoder.layers.2.attn.proj.weight": "model-00001-of-00002.safetensors",
621
+ "vision_model.encoder.layers.2.attn.qkv.bias": "model-00001-of-00002.safetensors",
622
+ "vision_model.encoder.layers.2.attn.qkv.weight": "model-00001-of-00002.safetensors",
623
+ "vision_model.encoder.layers.2.ls1": "model-00001-of-00002.safetensors",
624
+ "vision_model.encoder.layers.2.ls2": "model-00001-of-00002.safetensors",
625
+ "vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
626
+ "vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
627
+ "vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
628
+ "vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
629
+ "vision_model.encoder.layers.2.norm1.bias": "model-00001-of-00002.safetensors",
630
+ "vision_model.encoder.layers.2.norm1.weight": "model-00001-of-00002.safetensors",
631
+ "vision_model.encoder.layers.2.norm2.bias": "model-00001-of-00002.safetensors",
632
+ "vision_model.encoder.layers.2.norm2.weight": "model-00001-of-00002.safetensors",
633
+ "vision_model.encoder.layers.20.attn.proj.bias": "model-00001-of-00002.safetensors",
634
+ "vision_model.encoder.layers.20.attn.proj.weight": "model-00001-of-00002.safetensors",
635
+ "vision_model.encoder.layers.20.attn.qkv.bias": "model-00001-of-00002.safetensors",
636
+ "vision_model.encoder.layers.20.attn.qkv.weight": "model-00001-of-00002.safetensors",
637
+ "vision_model.encoder.layers.20.ls1": "model-00001-of-00002.safetensors",
638
+ "vision_model.encoder.layers.20.ls2": "model-00001-of-00002.safetensors",
639
+ "vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
640
+ "vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
641
+ "vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
642
+ "vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
643
+ "vision_model.encoder.layers.20.norm1.bias": "model-00001-of-00002.safetensors",
644
+ "vision_model.encoder.layers.20.norm1.weight": "model-00001-of-00002.safetensors",
645
+ "vision_model.encoder.layers.20.norm2.bias": "model-00001-of-00002.safetensors",
646
+ "vision_model.encoder.layers.20.norm2.weight": "model-00001-of-00002.safetensors",
647
+ "vision_model.encoder.layers.21.attn.proj.bias": "model-00001-of-00002.safetensors",
648
+ "vision_model.encoder.layers.21.attn.proj.weight": "model-00001-of-00002.safetensors",
649
+ "vision_model.encoder.layers.21.attn.qkv.bias": "model-00001-of-00002.safetensors",
650
+ "vision_model.encoder.layers.21.attn.qkv.weight": "model-00001-of-00002.safetensors",
651
+ "vision_model.encoder.layers.21.ls1": "model-00001-of-00002.safetensors",
652
+ "vision_model.encoder.layers.21.ls2": "model-00001-of-00002.safetensors",
653
+ "vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
654
+ "vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
655
+ "vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
656
+ "vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
657
+ "vision_model.encoder.layers.21.norm1.bias": "model-00001-of-00002.safetensors",
658
+ "vision_model.encoder.layers.21.norm1.weight": "model-00001-of-00002.safetensors",
659
+ "vision_model.encoder.layers.21.norm2.bias": "model-00001-of-00002.safetensors",
660
+ "vision_model.encoder.layers.21.norm2.weight": "model-00001-of-00002.safetensors",
661
+ "vision_model.encoder.layers.22.attn.proj.bias": "model-00001-of-00002.safetensors",
662
+ "vision_model.encoder.layers.22.attn.proj.weight": "model-00001-of-00002.safetensors",
663
+ "vision_model.encoder.layers.22.attn.qkv.bias": "model-00001-of-00002.safetensors",
664
+ "vision_model.encoder.layers.22.attn.qkv.weight": "model-00001-of-00002.safetensors",
665
+ "vision_model.encoder.layers.22.ls1": "model-00001-of-00002.safetensors",
666
+ "vision_model.encoder.layers.22.ls2": "model-00001-of-00002.safetensors",
667
+ "vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
668
+ "vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
669
+ "vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
670
+ "vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
671
+ "vision_model.encoder.layers.22.norm1.bias": "model-00001-of-00002.safetensors",
672
+ "vision_model.encoder.layers.22.norm1.weight": "model-00001-of-00002.safetensors",
673
+ "vision_model.encoder.layers.22.norm2.bias": "model-00001-of-00002.safetensors",
674
+ "vision_model.encoder.layers.22.norm2.weight": "model-00001-of-00002.safetensors",
675
+ "vision_model.encoder.layers.23.attn.proj.bias": "model-00001-of-00002.safetensors",
676
+ "vision_model.encoder.layers.23.attn.proj.weight": "model-00001-of-00002.safetensors",
677
+ "vision_model.encoder.layers.23.attn.qkv.bias": "model-00001-of-00002.safetensors",
678
+ "vision_model.encoder.layers.23.attn.qkv.weight": "model-00001-of-00002.safetensors",
679
+ "vision_model.encoder.layers.23.ls1": "model-00001-of-00002.safetensors",
680
+ "vision_model.encoder.layers.23.ls2": "model-00001-of-00002.safetensors",
681
+ "vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
682
+ "vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
683
+ "vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
684
+ "vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
685
+ "vision_model.encoder.layers.23.norm1.bias": "model-00001-of-00002.safetensors",
686
+ "vision_model.encoder.layers.23.norm1.weight": "model-00001-of-00002.safetensors",
687
+ "vision_model.encoder.layers.23.norm2.bias": "model-00001-of-00002.safetensors",
688
+ "vision_model.encoder.layers.23.norm2.weight": "model-00001-of-00002.safetensors",
689
+ "vision_model.encoder.layers.3.attn.proj.bias": "model-00001-of-00002.safetensors",
690
+ "vision_model.encoder.layers.3.attn.proj.weight": "model-00001-of-00002.safetensors",
691
+ "vision_model.encoder.layers.3.attn.qkv.bias": "model-00001-of-00002.safetensors",
692
+ "vision_model.encoder.layers.3.attn.qkv.weight": "model-00001-of-00002.safetensors",
693
+ "vision_model.encoder.layers.3.ls1": "model-00001-of-00002.safetensors",
694
+ "vision_model.encoder.layers.3.ls2": "model-00001-of-00002.safetensors",
695
+ "vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
696
+ "vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
697
+ "vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
698
+ "vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
699
+ "vision_model.encoder.layers.3.norm1.bias": "model-00001-of-00002.safetensors",
700
+ "vision_model.encoder.layers.3.norm1.weight": "model-00001-of-00002.safetensors",
701
+ "vision_model.encoder.layers.3.norm2.bias": "model-00001-of-00002.safetensors",
702
+ "vision_model.encoder.layers.3.norm2.weight": "model-00001-of-00002.safetensors",
703
+ "vision_model.encoder.layers.4.attn.proj.bias": "model-00001-of-00002.safetensors",
704
+ "vision_model.encoder.layers.4.attn.proj.weight": "model-00001-of-00002.safetensors",
705
+ "vision_model.encoder.layers.4.attn.qkv.bias": "model-00001-of-00002.safetensors",
706
+ "vision_model.encoder.layers.4.attn.qkv.weight": "model-00001-of-00002.safetensors",
707
+ "vision_model.encoder.layers.4.ls1": "model-00001-of-00002.safetensors",
708
+ "vision_model.encoder.layers.4.ls2": "model-00001-of-00002.safetensors",
709
+ "vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
710
+ "vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
711
+ "vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
712
+ "vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
713
+ "vision_model.encoder.layers.4.norm1.bias": "model-00001-of-00002.safetensors",
714
+ "vision_model.encoder.layers.4.norm1.weight": "model-00001-of-00002.safetensors",
715
+ "vision_model.encoder.layers.4.norm2.bias": "model-00001-of-00002.safetensors",
716
+ "vision_model.encoder.layers.4.norm2.weight": "model-00001-of-00002.safetensors",
717
+ "vision_model.encoder.layers.5.attn.proj.bias": "model-00001-of-00002.safetensors",
718
+ "vision_model.encoder.layers.5.attn.proj.weight": "model-00001-of-00002.safetensors",
719
+ "vision_model.encoder.layers.5.attn.qkv.bias": "model-00001-of-00002.safetensors",
720
+ "vision_model.encoder.layers.5.attn.qkv.weight": "model-00001-of-00002.safetensors",
721
+ "vision_model.encoder.layers.5.ls1": "model-00001-of-00002.safetensors",
722
+ "vision_model.encoder.layers.5.ls2": "model-00001-of-00002.safetensors",
723
+ "vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
724
+ "vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
725
+ "vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
726
+ "vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
727
+ "vision_model.encoder.layers.5.norm1.bias": "model-00001-of-00002.safetensors",
728
+ "vision_model.encoder.layers.5.norm1.weight": "model-00001-of-00002.safetensors",
729
+ "vision_model.encoder.layers.5.norm2.bias": "model-00001-of-00002.safetensors",
730
+ "vision_model.encoder.layers.5.norm2.weight": "model-00001-of-00002.safetensors",
731
+ "vision_model.encoder.layers.6.attn.proj.bias": "model-00001-of-00002.safetensors",
732
+ "vision_model.encoder.layers.6.attn.proj.weight": "model-00001-of-00002.safetensors",
733
+ "vision_model.encoder.layers.6.attn.qkv.bias": "model-00001-of-00002.safetensors",
734
+ "vision_model.encoder.layers.6.attn.qkv.weight": "model-00001-of-00002.safetensors",
735
+ "vision_model.encoder.layers.6.ls1": "model-00001-of-00002.safetensors",
736
+ "vision_model.encoder.layers.6.ls2": "model-00001-of-00002.safetensors",
737
+ "vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
738
+ "vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
739
+ "vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
740
+ "vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
741
+ "vision_model.encoder.layers.6.norm1.bias": "model-00001-of-00002.safetensors",
742
+ "vision_model.encoder.layers.6.norm1.weight": "model-00001-of-00002.safetensors",
743
+ "vision_model.encoder.layers.6.norm2.bias": "model-00001-of-00002.safetensors",
744
+ "vision_model.encoder.layers.6.norm2.weight": "model-00001-of-00002.safetensors",
745
+ "vision_model.encoder.layers.7.attn.proj.bias": "model-00001-of-00002.safetensors",
746
+ "vision_model.encoder.layers.7.attn.proj.weight": "model-00001-of-00002.safetensors",
747
+ "vision_model.encoder.layers.7.attn.qkv.bias": "model-00001-of-00002.safetensors",
748
+ "vision_model.encoder.layers.7.attn.qkv.weight": "model-00001-of-00002.safetensors",
749
+ "vision_model.encoder.layers.7.ls1": "model-00001-of-00002.safetensors",
750
+ "vision_model.encoder.layers.7.ls2": "model-00001-of-00002.safetensors",
751
+ "vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
752
+ "vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
753
+ "vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
754
+ "vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
755
+ "vision_model.encoder.layers.7.norm1.bias": "model-00001-of-00002.safetensors",
756
+ "vision_model.encoder.layers.7.norm1.weight": "model-00001-of-00002.safetensors",
757
+ "vision_model.encoder.layers.7.norm2.bias": "model-00001-of-00002.safetensors",
758
+ "vision_model.encoder.layers.7.norm2.weight": "model-00001-of-00002.safetensors",
759
+ "vision_model.encoder.layers.8.attn.proj.bias": "model-00001-of-00002.safetensors",
760
+ "vision_model.encoder.layers.8.attn.proj.weight": "model-00001-of-00002.safetensors",
761
+ "vision_model.encoder.layers.8.attn.qkv.bias": "model-00001-of-00002.safetensors",
762
+ "vision_model.encoder.layers.8.attn.qkv.weight": "model-00001-of-00002.safetensors",
763
+ "vision_model.encoder.layers.8.ls1": "model-00001-of-00002.safetensors",
764
+ "vision_model.encoder.layers.8.ls2": "model-00001-of-00002.safetensors",
765
+ "vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
766
+ "vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
767
+ "vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
768
+ "vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
769
+ "vision_model.encoder.layers.8.norm1.bias": "model-00001-of-00002.safetensors",
770
+ "vision_model.encoder.layers.8.norm1.weight": "model-00001-of-00002.safetensors",
771
+ "vision_model.encoder.layers.8.norm2.bias": "model-00001-of-00002.safetensors",
772
+ "vision_model.encoder.layers.8.norm2.weight": "model-00001-of-00002.safetensors",
773
+ "vision_model.encoder.layers.9.attn.proj.bias": "model-00001-of-00002.safetensors",
774
+ "vision_model.encoder.layers.9.attn.proj.weight": "model-00001-of-00002.safetensors",
775
+ "vision_model.encoder.layers.9.attn.qkv.bias": "model-00001-of-00002.safetensors",
776
+ "vision_model.encoder.layers.9.attn.qkv.weight": "model-00001-of-00002.safetensors",
777
+ "vision_model.encoder.layers.9.ls1": "model-00001-of-00002.safetensors",
778
+ "vision_model.encoder.layers.9.ls2": "model-00001-of-00002.safetensors",
779
+ "vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
780
+ "vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
781
+ "vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
782
+ "vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00002.safetensors",
783
+ "vision_model.encoder.layers.9.norm1.bias": "model-00001-of-00002.safetensors",
784
+ "vision_model.encoder.layers.9.norm1.weight": "model-00001-of-00002.safetensors",
785
+ "vision_model.encoder.layers.9.norm2.bias": "model-00001-of-00002.safetensors",
786
+ "vision_model.encoder.layers.9.norm2.weight": "model-00001-of-00002.safetensors"
787
+ }
788
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>",
16
+ "<img>",
17
+ "</img>",
18
+ "<IMG_CONTEXT>",
19
+ "<quad>",
20
+ "</quad>",
21
+ "<ref>",
22
+ "</ref>",
23
+ "<box>",
24
+ "</box>"
25
+ ],
26
+ "eos_token": {
27
+ "content": "<|im_end|>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ },
33
+ "pad_token": {
34
+ "content": "<|endoftext|>",
35
+ "lstrip": false,
36
+ "normalized": false,
37
+ "rstrip": false,
38
+ "single_word": false
39
+ }
40
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,290 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "151643": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "151644": {
15
+ "content": "<|im_start|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "151645": {
23
+ "content": "<|im_end|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "151646": {
31
+ "content": "<|object_ref_start|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "151647": {
39
+ "content": "<|object_ref_end|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "151648": {
47
+ "content": "<|box_start|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "151649": {
55
+ "content": "<|box_end|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "151650": {
63
+ "content": "<|quad_start|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "151651": {
71
+ "content": "<|quad_end|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "151652": {
79
+ "content": "<|vision_start|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "151653": {
87
+ "content": "<|vision_end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "151654": {
95
+ "content": "<|vision_pad|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "151655": {
103
+ "content": "<|image_pad|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "151656": {
111
+ "content": "<|video_pad|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "151657": {
119
+ "content": "<tool_call>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "151658": {
127
+ "content": "</tool_call>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "151659": {
135
+ "content": "<|fim_prefix|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "151660": {
143
+ "content": "<|fim_middle|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "151661": {
151
+ "content": "<|fim_suffix|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "151662": {
159
+ "content": "<|fim_pad|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "151663": {
167
+ "content": "<|repo_name|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "151664": {
175
+ "content": "<|file_sep|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "151665": {
183
+ "content": "<img>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": true
189
+ },
190
+ "151666": {
191
+ "content": "</img>",
192
+ "lstrip": false,
193
+ "normalized": false,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": true
197
+ },
198
+ "151667": {
199
+ "content": "<IMG_CONTEXT>",
200
+ "lstrip": false,
201
+ "normalized": false,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": true
205
+ },
206
+ "151668": {
207
+ "content": "<quad>",
208
+ "lstrip": false,
209
+ "normalized": false,
210
+ "rstrip": false,
211
+ "single_word": false,
212
+ "special": true
213
+ },
214
+ "151669": {
215
+ "content": "</quad>",
216
+ "lstrip": false,
217
+ "normalized": false,
218
+ "rstrip": false,
219
+ "single_word": false,
220
+ "special": true
221
+ },
222
+ "151670": {
223
+ "content": "<ref>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": false,
227
+ "single_word": false,
228
+ "special": true
229
+ },
230
+ "151671": {
231
+ "content": "</ref>",
232
+ "lstrip": false,
233
+ "normalized": false,
234
+ "rstrip": false,
235
+ "single_word": false,
236
+ "special": true
237
+ },
238
+ "151672": {
239
+ "content": "<box>",
240
+ "lstrip": false,
241
+ "normalized": false,
242
+ "rstrip": false,
243
+ "single_word": false,
244
+ "special": true
245
+ },
246
+ "151673": {
247
+ "content": "</box>",
248
+ "lstrip": false,
249
+ "normalized": false,
250
+ "rstrip": false,
251
+ "single_word": false,
252
+ "special": true
253
+ }
254
+ },
255
+ "additional_special_tokens": [
256
+ "<|im_start|>",
257
+ "<|im_end|>",
258
+ "<|object_ref_start|>",
259
+ "<|object_ref_end|>",
260
+ "<|box_start|>",
261
+ "<|box_end|>",
262
+ "<|quad_start|>",
263
+ "<|quad_end|>",
264
+ "<|vision_start|>",
265
+ "<|vision_end|>",
266
+ "<|vision_pad|>",
267
+ "<|image_pad|>",
268
+ "<|video_pad|>",
269
+ "<img>",
270
+ "</img>",
271
+ "<IMG_CONTEXT>",
272
+ "<quad>",
273
+ "</quad>",
274
+ "<ref>",
275
+ "</ref>",
276
+ "<box>",
277
+ "</box>"
278
+ ],
279
+ "bos_token": null,
280
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
281
+ "clean_up_tokenization_spaces": false,
282
+ "eos_token": "<|im_end|>",
283
+ "errors": "replace",
284
+ "extra_special_tokens": {},
285
+ "model_max_length": 16384,
286
+ "pad_token": "<|endoftext|>",
287
+ "split_special_tokens": false,
288
+ "tokenizer_class": "Qwen2Tokenizer",
289
+ "unk_token": null
290
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff