Upload folder using huggingface_hub
Browse files- README.md +524 -0
- added_tokens.json +33 -0
- config.json +195 -0
- configuration_intern_vit.py +120 -0
- configuration_internvl_chat.py +95 -0
- generation_config.json +9 -0
- merges.txt +0 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +788 -0
- special_tokens_map.json +40 -0
- tokenizer_config.json +290 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,524 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- multilingual
|
5 |
+
tags:
|
6 |
+
- nlp
|
7 |
+
base_model: OpenGVLab/InternVL2_5-4B
|
8 |
+
pipeline_tag: text-generation
|
9 |
+
inference: true
|
10 |
+
---
|
11 |
+
|
12 |
+
# NuExtract-2.0-4B by NuMind 🔥
|
13 |
+
|
14 |
+
NuExtract 2.0 is a family of models trained specifically for structured information extraction tasks. It supports both multimodal inputs and is multilingual.
|
15 |
+
|
16 |
+
We provide several versions of different sizes, all based on the InternVL2.5 family.
|
17 |
+
| Model Size | Model Name | Base Model | Huggingface Link |
|
18 |
+
|------------|------------|------------|------------------|
|
19 |
+
| 2B | NuExtract-2.0-2B | [InternVL2_5-2B](https://huggingface.co/OpenGVLab/InternVL2_5-2B) | [NuExtract-2.0-2B](https://huggingface.co/numind/NuExtract-2.0-2B) |
|
20 |
+
| 4B | NuExtract-2.0-4B | [InternVL2_5-4B](https://huggingface.co/OpenGVLab/InternVL2_5-4B) | [NuExtract-2.0-4B](https://huggingface.co/numind/NuExtract-2.0-4B) |
|
21 |
+
| 8B | NuExtract-2.0-8B | [InternVL2_5-8B](https://huggingface.co/OpenGVLab/InternVL2_5-8B) | [NuExtract-2.0-8B](https://huggingface.co/numind/NuExtract-2.0-8B) |
|
22 |
+
|
23 |
+
## Overview
|
24 |
+
|
25 |
+
To use the model, provide an input text/image and a JSON template describing the information you need to extract. The template should be a JSON object, specifying field names and their expected type.
|
26 |
+
|
27 |
+
Support types include:
|
28 |
+
* `verbatim-string` - instructs the model to extract text that is present verbatim in the input.
|
29 |
+
* `string` - a generic string field that can incorporate paraphrasing/abstraction.
|
30 |
+
* `integer` - a whole number.
|
31 |
+
* `number` - a whole or decimal number.
|
32 |
+
* `date-time` - ISO formatted date.
|
33 |
+
* `enum` - a choice from set of possible answers (represented in template as an array of options, e.g. `["yes", "no", "maybe"]`).
|
34 |
+
* `multi-label` - an enum that can have multiple possible answers (represented in template as a double-wrapped array, e.g. `[["A", "B", "C"]]`).
|
35 |
+
|
36 |
+
The following is an example template:
|
37 |
+
```json
|
38 |
+
{
|
39 |
+
"first_name": "verbatim-string",
|
40 |
+
"last_name": "verbatim-string",
|
41 |
+
"description": "string",
|
42 |
+
"age": "integer",
|
43 |
+
"gpa": "number",
|
44 |
+
"birth_date": "date-time",
|
45 |
+
"nationality": ["France", "England", "Japan", "USA", "China"],
|
46 |
+
"languages_spoken": [["English", "French", "Japanese", "Mandarin", "Spanish"]]
|
47 |
+
}
|
48 |
+
```
|
49 |
+
|
50 |
+
|
51 |
+
⚠️ We recommend using NuExtract with a temperature at or very close to 0. Some inference frameworks, such as Ollama, use a default of 0.7 which is not well suited to many extraction tasks.
|
52 |
+
|
53 |
+
## Inference
|
54 |
+
|
55 |
+
Use the following code to handle loading and preprocessing of input data:
|
56 |
+
|
57 |
+
```python
|
58 |
+
import torch
|
59 |
+
import torchvision.transforms as T
|
60 |
+
from PIL import Image
|
61 |
+
from torchvision.transforms.functional import InterpolationMode
|
62 |
+
|
63 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
64 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
65 |
+
|
66 |
+
def build_transform(input_size):
|
67 |
+
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
68 |
+
transform = T.Compose([
|
69 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
70 |
+
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
71 |
+
T.ToTensor(),
|
72 |
+
T.Normalize(mean=MEAN, std=STD)
|
73 |
+
])
|
74 |
+
return transform
|
75 |
+
|
76 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
77 |
+
best_ratio_diff = float('inf')
|
78 |
+
best_ratio = (1, 1)
|
79 |
+
area = width * height
|
80 |
+
for ratio in target_ratios:
|
81 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
82 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
83 |
+
if ratio_diff < best_ratio_diff:
|
84 |
+
best_ratio_diff = ratio_diff
|
85 |
+
best_ratio = ratio
|
86 |
+
elif ratio_diff == best_ratio_diff:
|
87 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
88 |
+
best_ratio = ratio
|
89 |
+
return best_ratio
|
90 |
+
|
91 |
+
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
|
92 |
+
orig_width, orig_height = image.size
|
93 |
+
aspect_ratio = orig_width / orig_height
|
94 |
+
|
95 |
+
# calculate the existing image aspect ratio
|
96 |
+
target_ratios = set(
|
97 |
+
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
98 |
+
i * j <= max_num and i * j >= min_num)
|
99 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
100 |
+
|
101 |
+
# find the closest aspect ratio to the target
|
102 |
+
target_aspect_ratio = find_closest_aspect_ratio(
|
103 |
+
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
104 |
+
|
105 |
+
# calculate the target width and height
|
106 |
+
target_width = image_size * target_aspect_ratio[0]
|
107 |
+
target_height = image_size * target_aspect_ratio[1]
|
108 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
109 |
+
|
110 |
+
# resize the image
|
111 |
+
resized_img = image.resize((target_width, target_height))
|
112 |
+
processed_images = []
|
113 |
+
for i in range(blocks):
|
114 |
+
box = (
|
115 |
+
(i % (target_width // image_size)) * image_size,
|
116 |
+
(i // (target_width // image_size)) * image_size,
|
117 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
118 |
+
((i // (target_width // image_size)) + 1) * image_size
|
119 |
+
)
|
120 |
+
# split the image
|
121 |
+
split_img = resized_img.crop(box)
|
122 |
+
processed_images.append(split_img)
|
123 |
+
assert len(processed_images) == blocks
|
124 |
+
if use_thumbnail and len(processed_images) != 1:
|
125 |
+
thumbnail_img = image.resize((image_size, image_size))
|
126 |
+
processed_images.append(thumbnail_img)
|
127 |
+
return processed_images
|
128 |
+
|
129 |
+
def load_image(image_file, input_size=448, max_num=12):
|
130 |
+
image = Image.open(image_file).convert('RGB')
|
131 |
+
transform = build_transform(input_size=input_size)
|
132 |
+
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
133 |
+
pixel_values = [transform(image) for image in images]
|
134 |
+
pixel_values = torch.stack(pixel_values)
|
135 |
+
return pixel_values
|
136 |
+
|
137 |
+
def prepare_inputs(messages, image_paths, tokenizer, device='cuda', dtype=torch.bfloat16):
|
138 |
+
"""
|
139 |
+
Prepares multi-modal input components (supports multiple images per prompt).
|
140 |
+
|
141 |
+
Args:
|
142 |
+
messages: List of input messages/prompts (strings or dicts with 'role' and 'content')
|
143 |
+
image_paths: List where each element is either None (for text-only) or a list of image paths
|
144 |
+
tokenizer: The tokenizer to use for applying chat templates
|
145 |
+
device: Device to place tensors on ('cuda', 'cpu', etc.)
|
146 |
+
dtype: Data type for image tensors (default: torch.bfloat16)
|
147 |
+
|
148 |
+
Returns:
|
149 |
+
dict: Contains 'prompts', 'pixel_values_list', and 'num_patches_list' ready for the model
|
150 |
+
"""
|
151 |
+
# Make sure image_paths list is at least as long as messages
|
152 |
+
if len(image_paths) < len(messages):
|
153 |
+
# Pad with None for text-only messages
|
154 |
+
image_paths = image_paths + [None] * (len(messages) - len(image_paths))
|
155 |
+
|
156 |
+
# Process images and collect patch information
|
157 |
+
loaded_images = []
|
158 |
+
num_patches_list = []
|
159 |
+
for paths in image_paths:
|
160 |
+
if paths and isinstance(paths, list) and len(paths) > 0:
|
161 |
+
# Load each image in this prompt
|
162 |
+
prompt_images = []
|
163 |
+
prompt_patches = []
|
164 |
+
|
165 |
+
for path in paths:
|
166 |
+
# Load the image
|
167 |
+
img = load_image(path).to(dtype=dtype, device=device)
|
168 |
+
|
169 |
+
# Ensure img has correct shape [patches, C, H, W]
|
170 |
+
if len(img.shape) == 3: # [C, H, W] -> [1, C, H, W]
|
171 |
+
img = img.unsqueeze(0)
|
172 |
+
|
173 |
+
prompt_images.append(img)
|
174 |
+
# Record the number of patches for this image
|
175 |
+
prompt_patches.append(img.shape[0])
|
176 |
+
|
177 |
+
loaded_images.append(prompt_images)
|
178 |
+
num_patches_list.append(prompt_patches)
|
179 |
+
else:
|
180 |
+
# Text-only prompt
|
181 |
+
loaded_images.append(None)
|
182 |
+
num_patches_list.append([])
|
183 |
+
|
184 |
+
# Create the concatenated pixel_values_list
|
185 |
+
pixel_values_list = []
|
186 |
+
for prompt_images in loaded_images:
|
187 |
+
if prompt_images:
|
188 |
+
# Concatenate all images for this prompt
|
189 |
+
pixel_values_list.append(torch.cat(prompt_images, dim=0))
|
190 |
+
else:
|
191 |
+
# Text-only prompt
|
192 |
+
pixel_values_list.append(None)
|
193 |
+
|
194 |
+
# Format messages for the model
|
195 |
+
if all(isinstance(m, str) for m in messages):
|
196 |
+
# Simple string messages: convert to chat format
|
197 |
+
batch_messages = [
|
198 |
+
[{"role": "user", "content": message}]
|
199 |
+
for message in messages
|
200 |
+
]
|
201 |
+
else:
|
202 |
+
# Assume messages are already in the right format
|
203 |
+
batch_messages = messages
|
204 |
+
|
205 |
+
# Apply chat template
|
206 |
+
prompts = tokenizer.apply_chat_template(
|
207 |
+
batch_messages,
|
208 |
+
tokenize=False,
|
209 |
+
add_generation_prompt=True
|
210 |
+
)
|
211 |
+
|
212 |
+
return {
|
213 |
+
'prompts': prompts,
|
214 |
+
'pixel_values_list': pixel_values_list,
|
215 |
+
'num_patches_list': num_patches_list
|
216 |
+
}
|
217 |
+
|
218 |
+
def construct_message(text, template, examples=None):
|
219 |
+
"""
|
220 |
+
Construct the individual NuExtract message texts, prior to chat template formatting.
|
221 |
+
"""
|
222 |
+
# add few-shot examples if needed
|
223 |
+
if examples is not None and len(examples) > 0:
|
224 |
+
icl = "# Examples:\n"
|
225 |
+
for row in examples:
|
226 |
+
icl += f"## Input:\n{row['input']}\n## Output:\n{row['output']}\n"
|
227 |
+
else:
|
228 |
+
icl = ""
|
229 |
+
|
230 |
+
return f"""# Template:\n{template}\n{icl}# Context:\n{text}"""
|
231 |
+
```
|
232 |
+
|
233 |
+
To handle inference:
|
234 |
+
|
235 |
+
```python
|
236 |
+
IMG_START_TOKEN='<img>'
|
237 |
+
IMG_END_TOKEN='</img>'
|
238 |
+
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>'
|
239 |
+
|
240 |
+
def nuextract_generate(model, tokenizer, prompts, generation_config, pixel_values_list=None, num_patches_list=None):
|
241 |
+
"""
|
242 |
+
Generate responses for a batch of NuExtract inputs.
|
243 |
+
Support for multiple and varying numbers of images per prompt.
|
244 |
+
|
245 |
+
Args:
|
246 |
+
model: The vision-language model
|
247 |
+
tokenizer: The tokenizer for the model
|
248 |
+
pixel_values_list: List of tensor batches, one per prompt
|
249 |
+
Each batch has shape [num_images, channels, height, width] or None for text-only prompts
|
250 |
+
prompts: List of text prompts
|
251 |
+
generation_config: Configuration for text generation
|
252 |
+
num_patches_list: List of lists, each containing patch counts for images in a prompt
|
253 |
+
|
254 |
+
Returns:
|
255 |
+
List of generated responses
|
256 |
+
"""
|
257 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
258 |
+
model.img_context_token_id = img_context_token_id
|
259 |
+
|
260 |
+
# Replace all image placeholders with appropriate tokens
|
261 |
+
modified_prompts = []
|
262 |
+
total_image_files = 0
|
263 |
+
total_patches = 0
|
264 |
+
image_containing_prompts = []
|
265 |
+
for idx, prompt in enumerate(prompts):
|
266 |
+
# check if this prompt has images
|
267 |
+
has_images = (pixel_values_list and
|
268 |
+
idx < len(pixel_values_list) and
|
269 |
+
pixel_values_list[idx] is not None and
|
270 |
+
isinstance(pixel_values_list[idx], torch.Tensor) and
|
271 |
+
pixel_values_list[idx].shape[0] > 0)
|
272 |
+
|
273 |
+
if has_images:
|
274 |
+
# prompt with image placeholders
|
275 |
+
image_containing_prompts.append(idx)
|
276 |
+
modified_prompt = prompt
|
277 |
+
|
278 |
+
patches = num_patches_list[idx] if (num_patches_list and idx < len(num_patches_list)) else []
|
279 |
+
num_images = len(patches)
|
280 |
+
total_image_files += num_images
|
281 |
+
total_patches += sum(patches)
|
282 |
+
|
283 |
+
# replace each <image> placeholder with image tokens
|
284 |
+
for i, num_patches in enumerate(patches):
|
285 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * model.num_image_token * num_patches + IMG_END_TOKEN
|
286 |
+
modified_prompt = modified_prompt.replace('<image>', image_tokens, 1)
|
287 |
+
else:
|
288 |
+
# text-only prompt
|
289 |
+
modified_prompt = prompt
|
290 |
+
|
291 |
+
modified_prompts.append(modified_prompt)
|
292 |
+
|
293 |
+
# process all prompts in a single batch
|
294 |
+
tokenizer.padding_side = 'left'
|
295 |
+
model_inputs = tokenizer(modified_prompts, return_tensors='pt', padding=True)
|
296 |
+
input_ids = model_inputs['input_ids'].to(model.device)
|
297 |
+
attention_mask = model_inputs['attention_mask'].to(model.device)
|
298 |
+
|
299 |
+
eos_token_id = tokenizer.convert_tokens_to_ids("<|im_end|>\n".strip())
|
300 |
+
generation_config['eos_token_id'] = eos_token_id
|
301 |
+
|
302 |
+
# prepare pixel values
|
303 |
+
flattened_pixel_values = None
|
304 |
+
if image_containing_prompts:
|
305 |
+
# collect and concatenate all image tensors
|
306 |
+
all_pixel_values = []
|
307 |
+
for idx in image_containing_prompts:
|
308 |
+
all_pixel_values.append(pixel_values_list[idx])
|
309 |
+
|
310 |
+
flattened_pixel_values = torch.cat(all_pixel_values, dim=0)
|
311 |
+
print(f"Processing batch with {len(prompts)} prompts, {total_image_files} actual images, and {total_patches} total patches")
|
312 |
+
else:
|
313 |
+
print(f"Processing text-only batch with {len(prompts)} prompts")
|
314 |
+
|
315 |
+
# generate outputs
|
316 |
+
outputs = model.generate(
|
317 |
+
pixel_values=flattened_pixel_values, # will be None for text-only prompts
|
318 |
+
input_ids=input_ids,
|
319 |
+
attention_mask=attention_mask,
|
320 |
+
**generation_config
|
321 |
+
)
|
322 |
+
|
323 |
+
# Decode responses
|
324 |
+
responses = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
325 |
+
|
326 |
+
return responses
|
327 |
+
```
|
328 |
+
|
329 |
+
To load the model:
|
330 |
+
|
331 |
+
```python
|
332 |
+
import torch
|
333 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
334 |
+
|
335 |
+
model_name = ""
|
336 |
+
|
337 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, padding_side='left')
|
338 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True,
|
339 |
+
torch_dtype=torch.bfloat16,
|
340 |
+
attn_implementation="flash_attention_2" # we recommend using flash attention
|
341 |
+
).to("cuda")
|
342 |
+
```
|
343 |
+
|
344 |
+
Simple 0-shot text-only example:
|
345 |
+
```python
|
346 |
+
template = """{"names": ["verbatim-string"]}"""
|
347 |
+
text = "John went to the restaurant with Mary. James went to the cinema."
|
348 |
+
|
349 |
+
input_messages = [construct_message(text, template)]
|
350 |
+
|
351 |
+
input_content = prepare_inputs(
|
352 |
+
messages=input_messages,
|
353 |
+
image_paths=[],
|
354 |
+
tokenizer=tokenizer,
|
355 |
+
)
|
356 |
+
|
357 |
+
generation_config = {"do_sample": False, "num_beams": 1, "max_new_tokens": 2048}
|
358 |
+
|
359 |
+
with torch.no_grad():
|
360 |
+
result = nuextract_generate(
|
361 |
+
model=model,
|
362 |
+
tokenizer=tokenizer,
|
363 |
+
prompts=input_content['prompts'],
|
364 |
+
pixel_values_list=input_content['pixel_values_list'],
|
365 |
+
num_patches_list=input_content['num_patches_list'],
|
366 |
+
generation_config=generation_config
|
367 |
+
)
|
368 |
+
for y in result:
|
369 |
+
print(y)
|
370 |
+
# {"names": ["John", "Mary", "James"]}
|
371 |
+
```
|
372 |
+
|
373 |
+
Text-only input with an in-context example:
|
374 |
+
```python
|
375 |
+
template = """{"names": ["verbatim-string"], "female_names": ["verbatim-string"]}"""
|
376 |
+
text = "John went to the restaurant with Mary. James went to the cinema."
|
377 |
+
examples = [
|
378 |
+
{
|
379 |
+
"input": "Stephen is the manager at Susan's store.",
|
380 |
+
"output": """{"names": ["STEPHEN", "SUSAN"], "female_names": ["SUSAN"]}"""
|
381 |
+
}
|
382 |
+
]
|
383 |
+
|
384 |
+
input_messages = [construct_message(text, template, examples)]
|
385 |
+
|
386 |
+
input_content = prepare_inputs(
|
387 |
+
messages=input_messages,
|
388 |
+
image_paths=[],
|
389 |
+
tokenizer=tokenizer,
|
390 |
+
)
|
391 |
+
|
392 |
+
generation_config = {"do_sample": False, "num_beams": 1, "max_new_tokens": 2048}
|
393 |
+
|
394 |
+
with torch.no_grad():
|
395 |
+
result = nuextract_generate(
|
396 |
+
model=model,
|
397 |
+
tokenizer=tokenizer,
|
398 |
+
prompts=input_content['prompts'],
|
399 |
+
pixel_values_list=input_content['pixel_values_list'],
|
400 |
+
num_patches_list=input_content['num_patches_list'],
|
401 |
+
generation_config=generation_config
|
402 |
+
)
|
403 |
+
for y in result:
|
404 |
+
print(y)
|
405 |
+
# {"names": ["JOHN", "MARY", "JAMES"], "female_names": ["MARY"]}
|
406 |
+
```
|
407 |
+
|
408 |
+
Example with image input and an in-context example. Image inputs should use `<image>` placeholder instead of text and image paths should be provided in a list in order of appearance in the prompt (in this example `0.jpg` will be for the in-context example and `1.jpg` for the true input).
|
409 |
+
```python
|
410 |
+
template = """{"store": "verbatim-string"}"""
|
411 |
+
text = "<image>"
|
412 |
+
examples = [
|
413 |
+
{
|
414 |
+
"input": "<image>",
|
415 |
+
"output": """{"store": "Walmart"}"""
|
416 |
+
}
|
417 |
+
]
|
418 |
+
|
419 |
+
input_messages = [construct_message(text, template, examples)]
|
420 |
+
|
421 |
+
images = [
|
422 |
+
["0.jpg", "1.jpg"]
|
423 |
+
]
|
424 |
+
|
425 |
+
input_content = prepare_inputs(
|
426 |
+
messages=input_messages,
|
427 |
+
image_paths=images,
|
428 |
+
tokenizer=tokenizer,
|
429 |
+
)
|
430 |
+
|
431 |
+
generation_config = {"do_sample": False, "num_beams": 1, "max_new_tokens": 2048}
|
432 |
+
|
433 |
+
with torch.no_grad():
|
434 |
+
result = nuextract_generate(
|
435 |
+
model=model,
|
436 |
+
tokenizer=tokenizer,
|
437 |
+
prompts=input_content['prompts'],
|
438 |
+
pixel_values_list=input_content['pixel_values_list'],
|
439 |
+
num_patches_list=input_content['num_patches_list'],
|
440 |
+
generation_config=generation_config
|
441 |
+
)
|
442 |
+
for y in result:
|
443 |
+
print(y)
|
444 |
+
# {"store": "Trader Joe's"}
|
445 |
+
```
|
446 |
+
|
447 |
+
Multi-modal batched input:
|
448 |
+
```python
|
449 |
+
inputs = [
|
450 |
+
# image input with no ICL examples
|
451 |
+
{
|
452 |
+
"text": "<image>",
|
453 |
+
"template": """{"store_name": "verbatim-string"}""",
|
454 |
+
"examples": None,
|
455 |
+
},
|
456 |
+
# image input with 1 ICL example
|
457 |
+
{
|
458 |
+
"text": "<image>",
|
459 |
+
"template": """{"store_name": "verbatim-string"}""",
|
460 |
+
"examples": [
|
461 |
+
{
|
462 |
+
"input": "<image>",
|
463 |
+
"output": """{"store_name": "Walmart"}""",
|
464 |
+
}
|
465 |
+
],
|
466 |
+
},
|
467 |
+
# text input with no ICL examples
|
468 |
+
{
|
469 |
+
"text": "John went to the restaurant with Mary. James went to the cinema.",
|
470 |
+
"template": """{"names": ["verbatim-string"]}""",
|
471 |
+
"examples": None,
|
472 |
+
},
|
473 |
+
# text input with ICL example
|
474 |
+
{
|
475 |
+
"text": "John went to the restaurant with Mary. James went to the cinema.",
|
476 |
+
"template": """{"names": ["verbatim-string"], "female_names": ["verbatim-string"]}""",
|
477 |
+
"examples": [
|
478 |
+
{
|
479 |
+
"input": "Stephen is the manager at Susan's store.",
|
480 |
+
"output": """{"names": ["STEPHEN", "SUSAN"], "female_names": ["SUSAN"]}"""
|
481 |
+
}
|
482 |
+
],
|
483 |
+
},
|
484 |
+
]
|
485 |
+
|
486 |
+
input_messages = [
|
487 |
+
construct_message(
|
488 |
+
x["text"],
|
489 |
+
x["template"],
|
490 |
+
x["examples"]
|
491 |
+
) for x in inputs
|
492 |
+
]
|
493 |
+
|
494 |
+
images = [
|
495 |
+
["0.jpg"],
|
496 |
+
["0.jpg", "1.jpg"],
|
497 |
+
None,
|
498 |
+
None
|
499 |
+
]
|
500 |
+
|
501 |
+
input_content = prepare_inputs(
|
502 |
+
messages=input_messages,
|
503 |
+
image_paths=images,
|
504 |
+
tokenizer=tokenizer,
|
505 |
+
)
|
506 |
+
|
507 |
+
generation_config = {"do_sample": False, "num_beams": 1, "max_new_tokens": 2048}
|
508 |
+
|
509 |
+
with torch.no_grad():
|
510 |
+
result = nuextract_generate(
|
511 |
+
model=model,
|
512 |
+
tokenizer=tokenizer,
|
513 |
+
prompts=input_content['prompts'],
|
514 |
+
pixel_values_list=input_content['pixel_values_list'],
|
515 |
+
num_patches_list=input_content['num_patches_list'],
|
516 |
+
generation_config=generation_config
|
517 |
+
)
|
518 |
+
for y in result:
|
519 |
+
print(y)
|
520 |
+
# {"store_name": "WAL*MART"}
|
521 |
+
# {"store_name": "Trader Joe's"}
|
522 |
+
# {"names": ["John", "Mary", "James"]}
|
523 |
+
# {"names": ["JOHN", "MARY", "JAMES"], "female_names": ["MARY"]}
|
524 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</box>": 151673,
|
3 |
+
"</img>": 151666,
|
4 |
+
"</quad>": 151669,
|
5 |
+
"</ref>": 151671,
|
6 |
+
"</tool_call>": 151658,
|
7 |
+
"<IMG_CONTEXT>": 151667,
|
8 |
+
"<box>": 151672,
|
9 |
+
"<img>": 151665,
|
10 |
+
"<quad>": 151668,
|
11 |
+
"<ref>": 151670,
|
12 |
+
"<tool_call>": 151657,
|
13 |
+
"<|box_end|>": 151649,
|
14 |
+
"<|box_start|>": 151648,
|
15 |
+
"<|endoftext|>": 151643,
|
16 |
+
"<|file_sep|>": 151664,
|
17 |
+
"<|fim_middle|>": 151660,
|
18 |
+
"<|fim_pad|>": 151662,
|
19 |
+
"<|fim_prefix|>": 151659,
|
20 |
+
"<|fim_suffix|>": 151661,
|
21 |
+
"<|im_end|>": 151645,
|
22 |
+
"<|im_start|>": 151644,
|
23 |
+
"<|image_pad|>": 151655,
|
24 |
+
"<|object_ref_end|>": 151647,
|
25 |
+
"<|object_ref_start|>": 151646,
|
26 |
+
"<|quad_end|>": 151651,
|
27 |
+
"<|quad_start|>": 151650,
|
28 |
+
"<|repo_name|>": 151663,
|
29 |
+
"<|video_pad|>": 151656,
|
30 |
+
"<|vision_end|>": 151653,
|
31 |
+
"<|vision_pad|>": 151654,
|
32 |
+
"<|vision_start|>": 151652
|
33 |
+
}
|
config.json
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_commit_hash": null,
|
3 |
+
"_name_or_path": "experiments/intervl4B_filter/checkpoint-6000",
|
4 |
+
"architectures": [
|
5 |
+
"InternVLChatModel"
|
6 |
+
],
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
|
9 |
+
"AutoModel": "OpenGVLab/InternVL2_5-4B-MPO--modeling_internvl_chat.InternVLChatModel",
|
10 |
+
"AutoModelForCausalLM": "OpenGVLab/InternVL2_5-4B-MPO--modeling_internvl_chat.InternVLChatModel"
|
11 |
+
},
|
12 |
+
"downsample_ratio": 0.5,
|
13 |
+
"dynamic_image_size": true,
|
14 |
+
"force_image_size": 448,
|
15 |
+
"llm_config": {
|
16 |
+
"_attn_implementation_autoset": true,
|
17 |
+
"_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
|
18 |
+
"add_cross_attention": false,
|
19 |
+
"architectures": [
|
20 |
+
"Qwen2ForCausalLM"
|
21 |
+
],
|
22 |
+
"attention_dropout": 0.0,
|
23 |
+
"bad_words_ids": null,
|
24 |
+
"begin_suppress_tokens": null,
|
25 |
+
"bos_token_id": 151643,
|
26 |
+
"chunk_size_feed_forward": 0,
|
27 |
+
"cross_attention_hidden_size": null,
|
28 |
+
"decoder_start_token_id": null,
|
29 |
+
"diversity_penalty": 0.0,
|
30 |
+
"do_sample": false,
|
31 |
+
"early_stopping": false,
|
32 |
+
"encoder_no_repeat_ngram_size": 0,
|
33 |
+
"eos_token_id": 151645,
|
34 |
+
"exponential_decay_length_penalty": null,
|
35 |
+
"finetuning_task": null,
|
36 |
+
"forced_bos_token_id": null,
|
37 |
+
"forced_eos_token_id": null,
|
38 |
+
"hidden_act": "silu",
|
39 |
+
"hidden_size": 2048,
|
40 |
+
"id2label": {
|
41 |
+
"0": "LABEL_0",
|
42 |
+
"1": "LABEL_1"
|
43 |
+
},
|
44 |
+
"initializer_range": 0.02,
|
45 |
+
"intermediate_size": 11008,
|
46 |
+
"is_decoder": false,
|
47 |
+
"is_encoder_decoder": false,
|
48 |
+
"label2id": {
|
49 |
+
"LABEL_0": 0,
|
50 |
+
"LABEL_1": 1
|
51 |
+
},
|
52 |
+
"length_penalty": 1.0,
|
53 |
+
"max_length": 20,
|
54 |
+
"max_position_embeddings": 32768,
|
55 |
+
"max_window_layers": 70,
|
56 |
+
"min_length": 0,
|
57 |
+
"model_type": "qwen2",
|
58 |
+
"no_repeat_ngram_size": 0,
|
59 |
+
"num_attention_heads": 16,
|
60 |
+
"num_beam_groups": 1,
|
61 |
+
"num_beams": 1,
|
62 |
+
"num_hidden_layers": 36,
|
63 |
+
"num_key_value_heads": 2,
|
64 |
+
"num_return_sequences": 1,
|
65 |
+
"output_attentions": false,
|
66 |
+
"output_hidden_states": false,
|
67 |
+
"output_scores": false,
|
68 |
+
"pad_token_id": null,
|
69 |
+
"prefix": null,
|
70 |
+
"problem_type": null,
|
71 |
+
"pruned_heads": {},
|
72 |
+
"remove_invalid_values": false,
|
73 |
+
"repetition_penalty": 1.0,
|
74 |
+
"return_dict": true,
|
75 |
+
"return_dict_in_generate": false,
|
76 |
+
"rms_norm_eps": 1e-06,
|
77 |
+
"rope_scaling": null,
|
78 |
+
"rope_theta": 1000000.0,
|
79 |
+
"sep_token_id": null,
|
80 |
+
"sliding_window": null,
|
81 |
+
"suppress_tokens": null,
|
82 |
+
"task_specific_params": null,
|
83 |
+
"temperature": 1.0,
|
84 |
+
"tf_legacy_loss": false,
|
85 |
+
"tie_encoder_decoder": false,
|
86 |
+
"tie_word_embeddings": false,
|
87 |
+
"tokenizer_class": null,
|
88 |
+
"top_k": 50,
|
89 |
+
"top_p": 1.0,
|
90 |
+
"torch_dtype": "bfloat16",
|
91 |
+
"torchscript": false,
|
92 |
+
"transformers_version": "4.49.0.dev0",
|
93 |
+
"typical_p": 1.0,
|
94 |
+
"use_bfloat16": true,
|
95 |
+
"use_cache": true,
|
96 |
+
"use_sliding_window": false,
|
97 |
+
"vocab_size": 151674
|
98 |
+
},
|
99 |
+
"max_dynamic_patch": 12,
|
100 |
+
"min_dynamic_patch": 1,
|
101 |
+
"model_type": "internvl_chat",
|
102 |
+
"ps_version": "v2",
|
103 |
+
"select_layer": -1,
|
104 |
+
"template": "internvl2_5",
|
105 |
+
"torch_dtype": "bfloat16",
|
106 |
+
"transformers_version": null,
|
107 |
+
"use_backbone_lora": 0,
|
108 |
+
"use_llm_lora": 0,
|
109 |
+
"use_thumbnail": true,
|
110 |
+
"vision_config": {
|
111 |
+
"_attn_implementation_autoset": true,
|
112 |
+
"_name_or_path": "",
|
113 |
+
"add_cross_attention": false,
|
114 |
+
"architectures": [
|
115 |
+
"InternVisionModel"
|
116 |
+
],
|
117 |
+
"attention_dropout": 0.0,
|
118 |
+
"bad_words_ids": null,
|
119 |
+
"begin_suppress_tokens": null,
|
120 |
+
"bos_token_id": null,
|
121 |
+
"chunk_size_feed_forward": 0,
|
122 |
+
"cross_attention_hidden_size": null,
|
123 |
+
"decoder_start_token_id": null,
|
124 |
+
"diversity_penalty": 0.0,
|
125 |
+
"do_sample": false,
|
126 |
+
"drop_path_rate": 0.0,
|
127 |
+
"dropout": 0.0,
|
128 |
+
"early_stopping": false,
|
129 |
+
"encoder_no_repeat_ngram_size": 0,
|
130 |
+
"eos_token_id": null,
|
131 |
+
"exponential_decay_length_penalty": null,
|
132 |
+
"finetuning_task": null,
|
133 |
+
"forced_bos_token_id": null,
|
134 |
+
"forced_eos_token_id": null,
|
135 |
+
"hidden_act": "gelu",
|
136 |
+
"hidden_size": 1024,
|
137 |
+
"id2label": {
|
138 |
+
"0": "LABEL_0",
|
139 |
+
"1": "LABEL_1"
|
140 |
+
},
|
141 |
+
"image_size": 448,
|
142 |
+
"initializer_factor": 1.0,
|
143 |
+
"initializer_range": 0.02,
|
144 |
+
"intermediate_size": 4096,
|
145 |
+
"is_decoder": false,
|
146 |
+
"is_encoder_decoder": false,
|
147 |
+
"label2id": {
|
148 |
+
"LABEL_0": 0,
|
149 |
+
"LABEL_1": 1
|
150 |
+
},
|
151 |
+
"layer_norm_eps": 1e-06,
|
152 |
+
"length_penalty": 1.0,
|
153 |
+
"max_length": 20,
|
154 |
+
"min_length": 0,
|
155 |
+
"model_type": "intern_vit_6b",
|
156 |
+
"no_repeat_ngram_size": 0,
|
157 |
+
"norm_type": "layer_norm",
|
158 |
+
"num_attention_heads": 16,
|
159 |
+
"num_beam_groups": 1,
|
160 |
+
"num_beams": 1,
|
161 |
+
"num_channels": 3,
|
162 |
+
"num_hidden_layers": 24,
|
163 |
+
"num_return_sequences": 1,
|
164 |
+
"output_attentions": false,
|
165 |
+
"output_hidden_states": false,
|
166 |
+
"output_scores": false,
|
167 |
+
"pad_token_id": null,
|
168 |
+
"patch_size": 14,
|
169 |
+
"prefix": null,
|
170 |
+
"problem_type": null,
|
171 |
+
"pruned_heads": {},
|
172 |
+
"qk_normalization": false,
|
173 |
+
"qkv_bias": true,
|
174 |
+
"remove_invalid_values": false,
|
175 |
+
"repetition_penalty": 1.0,
|
176 |
+
"return_dict": true,
|
177 |
+
"return_dict_in_generate": false,
|
178 |
+
"sep_token_id": null,
|
179 |
+
"suppress_tokens": null,
|
180 |
+
"task_specific_params": null,
|
181 |
+
"temperature": 1.0,
|
182 |
+
"tf_legacy_loss": false,
|
183 |
+
"tie_encoder_decoder": false,
|
184 |
+
"tie_word_embeddings": true,
|
185 |
+
"tokenizer_class": null,
|
186 |
+
"top_k": 50,
|
187 |
+
"top_p": 1.0,
|
188 |
+
"torch_dtype": "bfloat16",
|
189 |
+
"torchscript": false,
|
190 |
+
"transformers_version": "4.49.0.dev0",
|
191 |
+
"typical_p": 1.0,
|
192 |
+
"use_bfloat16": true,
|
193 |
+
"use_flash_attn": true
|
194 |
+
}
|
195 |
+
}
|
configuration_intern_vit.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import os
|
8 |
+
from typing import Union
|
9 |
+
|
10 |
+
from transformers.configuration_utils import PretrainedConfig
|
11 |
+
from transformers.utils import logging
|
12 |
+
|
13 |
+
logger = logging.get_logger(__name__)
|
14 |
+
|
15 |
+
|
16 |
+
class InternVisionConfig(PretrainedConfig):
|
17 |
+
r"""
|
18 |
+
This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
|
19 |
+
instantiate a vision encoder according to the specified arguments, defining the model architecture.
|
20 |
+
|
21 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
22 |
+
documentation from [`PretrainedConfig`] for more information.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
num_channels (`int`, *optional*, defaults to 3):
|
26 |
+
Number of color channels in the input images (e.g., 3 for RGB).
|
27 |
+
patch_size (`int`, *optional*, defaults to 14):
|
28 |
+
The size (resolution) of each patch.
|
29 |
+
image_size (`int`, *optional*, defaults to 224):
|
30 |
+
The size (resolution) of each image.
|
31 |
+
qkv_bias (`bool`, *optional*, defaults to `False`):
|
32 |
+
Whether to add a bias to the queries and values in the self-attention layers.
|
33 |
+
hidden_size (`int`, *optional*, defaults to 3200):
|
34 |
+
Dimensionality of the encoder layers and the pooler layer.
|
35 |
+
num_attention_heads (`int`, *optional*, defaults to 25):
|
36 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
37 |
+
intermediate_size (`int`, *optional*, defaults to 12800):
|
38 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
39 |
+
qk_normalization (`bool`, *optional*, defaults to `True`):
|
40 |
+
Whether to normalize the queries and keys in the self-attention layers.
|
41 |
+
num_hidden_layers (`int`, *optional*, defaults to 48):
|
42 |
+
Number of hidden layers in the Transformer encoder.
|
43 |
+
use_flash_attn (`bool`, *optional*, defaults to `True`):
|
44 |
+
Whether to use flash attention mechanism.
|
45 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
46 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
47 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
|
48 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
|
49 |
+
The epsilon used by the layer normalization layers.
|
50 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
51 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
52 |
+
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
53 |
+
Dropout rate for stochastic depth.
|
54 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
55 |
+
The dropout ratio for the attention probabilities.
|
56 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
57 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
58 |
+
initializer_factor (`float`, *optional*, defaults to 0.1):
|
59 |
+
A factor for layer scale.
|
60 |
+
"""
|
61 |
+
|
62 |
+
model_type = 'intern_vit_6b'
|
63 |
+
|
64 |
+
def __init__(
|
65 |
+
self,
|
66 |
+
num_channels=3,
|
67 |
+
patch_size=14,
|
68 |
+
image_size=224,
|
69 |
+
qkv_bias=False,
|
70 |
+
hidden_size=3200,
|
71 |
+
num_attention_heads=25,
|
72 |
+
intermediate_size=12800,
|
73 |
+
qk_normalization=True,
|
74 |
+
num_hidden_layers=48,
|
75 |
+
use_flash_attn=True,
|
76 |
+
hidden_act='gelu',
|
77 |
+
norm_type='rms_norm',
|
78 |
+
layer_norm_eps=1e-6,
|
79 |
+
dropout=0.0,
|
80 |
+
drop_path_rate=0.0,
|
81 |
+
attention_dropout=0.0,
|
82 |
+
initializer_range=0.02,
|
83 |
+
initializer_factor=0.1,
|
84 |
+
**kwargs,
|
85 |
+
):
|
86 |
+
super().__init__(**kwargs)
|
87 |
+
|
88 |
+
self.hidden_size = hidden_size
|
89 |
+
self.intermediate_size = intermediate_size
|
90 |
+
self.dropout = dropout
|
91 |
+
self.drop_path_rate = drop_path_rate
|
92 |
+
self.num_hidden_layers = num_hidden_layers
|
93 |
+
self.num_attention_heads = num_attention_heads
|
94 |
+
self.num_channels = num_channels
|
95 |
+
self.patch_size = patch_size
|
96 |
+
self.image_size = image_size
|
97 |
+
self.initializer_range = initializer_range
|
98 |
+
self.initializer_factor = initializer_factor
|
99 |
+
self.attention_dropout = attention_dropout
|
100 |
+
self.layer_norm_eps = layer_norm_eps
|
101 |
+
self.hidden_act = hidden_act
|
102 |
+
self.norm_type = norm_type
|
103 |
+
self.qkv_bias = qkv_bias
|
104 |
+
self.qk_normalization = qk_normalization
|
105 |
+
self.use_flash_attn = use_flash_attn
|
106 |
+
|
107 |
+
@classmethod
|
108 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
|
109 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
110 |
+
|
111 |
+
if 'vision_config' in config_dict:
|
112 |
+
config_dict = config_dict['vision_config']
|
113 |
+
|
114 |
+
if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
|
115 |
+
logger.warning(
|
116 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
117 |
+
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
|
118 |
+
)
|
119 |
+
|
120 |
+
return cls.from_dict(config_dict, **kwargs)
|
configuration_internvl_chat.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import copy
|
8 |
+
|
9 |
+
from transformers import AutoConfig, LlamaConfig, Qwen2Config
|
10 |
+
from transformers.configuration_utils import PretrainedConfig
|
11 |
+
from transformers.utils import logging
|
12 |
+
|
13 |
+
from .configuration_intern_vit import InternVisionConfig
|
14 |
+
|
15 |
+
logger = logging.get_logger(__name__)
|
16 |
+
|
17 |
+
|
18 |
+
class InternVLChatConfig(PretrainedConfig):
|
19 |
+
model_type = 'internvl_chat'
|
20 |
+
is_composition = True
|
21 |
+
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
vision_config=None,
|
25 |
+
llm_config=None,
|
26 |
+
use_backbone_lora=0,
|
27 |
+
use_llm_lora=0,
|
28 |
+
select_layer=-1,
|
29 |
+
force_image_size=None,
|
30 |
+
downsample_ratio=0.5,
|
31 |
+
template=None,
|
32 |
+
dynamic_image_size=False,
|
33 |
+
use_thumbnail=False,
|
34 |
+
ps_version='v1',
|
35 |
+
min_dynamic_patch=1,
|
36 |
+
max_dynamic_patch=6,
|
37 |
+
**kwargs):
|
38 |
+
super().__init__(**kwargs)
|
39 |
+
|
40 |
+
if vision_config is None:
|
41 |
+
vision_config = {'architectures': ['InternVisionModel']}
|
42 |
+
logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
|
43 |
+
|
44 |
+
if llm_config is None:
|
45 |
+
llm_config = {'architectures': ['Qwen2ForCausalLM']}
|
46 |
+
logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
|
47 |
+
|
48 |
+
self.vision_config = InternVisionConfig(**vision_config)
|
49 |
+
if llm_config.get('architectures')[0] == 'LlamaForCausalLM':
|
50 |
+
self.llm_config = LlamaConfig(**llm_config)
|
51 |
+
elif llm_config.get('architectures')[0] == 'Qwen2ForCausalLM':
|
52 |
+
self.llm_config = Qwen2Config(**llm_config)
|
53 |
+
else:
|
54 |
+
raise ValueError('Unsupported architecture: {}'.format(llm_config.get('architectures')[0]))
|
55 |
+
self.use_backbone_lora = use_backbone_lora
|
56 |
+
self.use_llm_lora = use_llm_lora
|
57 |
+
self.select_layer = select_layer
|
58 |
+
self.force_image_size = force_image_size
|
59 |
+
self.downsample_ratio = downsample_ratio
|
60 |
+
self.template = template
|
61 |
+
self.dynamic_image_size = dynamic_image_size
|
62 |
+
self.use_thumbnail = use_thumbnail
|
63 |
+
self.ps_version = ps_version # pixel shuffle version
|
64 |
+
self.min_dynamic_patch = min_dynamic_patch
|
65 |
+
self.max_dynamic_patch = max_dynamic_patch
|
66 |
+
|
67 |
+
logger.info(f'vision_select_layer: {self.select_layer}')
|
68 |
+
logger.info(f'ps_version: {self.ps_version}')
|
69 |
+
logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
|
70 |
+
logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
|
71 |
+
|
72 |
+
def to_dict(self):
|
73 |
+
"""
|
74 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
78 |
+
"""
|
79 |
+
output = copy.deepcopy(self.__dict__)
|
80 |
+
output['vision_config'] = self.vision_config.to_dict()
|
81 |
+
output['llm_config'] = self.llm_config.to_dict()
|
82 |
+
output['model_type'] = self.__class__.model_type
|
83 |
+
output['use_backbone_lora'] = self.use_backbone_lora
|
84 |
+
output['use_llm_lora'] = self.use_llm_lora
|
85 |
+
output['select_layer'] = self.select_layer
|
86 |
+
output['force_image_size'] = self.force_image_size
|
87 |
+
output['downsample_ratio'] = self.downsample_ratio
|
88 |
+
output['template'] = self.template
|
89 |
+
output['dynamic_image_size'] = self.dynamic_image_size
|
90 |
+
output['use_thumbnail'] = self.use_thumbnail
|
91 |
+
output['ps_version'] = self.ps_version
|
92 |
+
output['min_dynamic_patch'] = self.min_dynamic_patch
|
93 |
+
output['max_dynamic_patch'] = self.max_dynamic_patch
|
94 |
+
|
95 |
+
return output
|
generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"eos_token_id": [
|
4 |
+
151644,
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"transformers_version": "4.49.0.dev0"
|
9 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b0468f648c6c99010629f4604f5286abb27cee37b1e079fb142b48eb98468566
|
3 |
+
size 4993023560
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b68e1f2a5f56d507eff47c5c565e68abbd02a28bf1398b28a7892c259ed86b3
|
3 |
+
size 2432349168
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,788 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 7425275904
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"language_model.lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"language_model.model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"language_model.model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
14 |
+
"language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"language_model.model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
17 |
+
"language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"language_model.model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
19 |
+
"language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"language_model.model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
26 |
+
"language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"language_model.model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
29 |
+
"language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"language_model.model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
31 |
+
"language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"language_model.model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"language_model.model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"language_model.model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"language_model.model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"language_model.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"language_model.model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
38 |
+
"language_model.model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"language_model.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"language_model.model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
41 |
+
"language_model.model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"language_model.model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
43 |
+
"language_model.model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"language_model.model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"language_model.model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"language_model.model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"language_model.model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"language_model.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"language_model.model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
50 |
+
"language_model.model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"language_model.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"language_model.model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
53 |
+
"language_model.model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"language_model.model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
55 |
+
"language_model.model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"language_model.model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"language_model.model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"language_model.model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"language_model.model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"language_model.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"language_model.model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
62 |
+
"language_model.model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"language_model.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"language_model.model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
65 |
+
"language_model.model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"language_model.model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
67 |
+
"language_model.model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"language_model.model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"language_model.model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"language_model.model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"language_model.model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"language_model.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"language_model.model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
74 |
+
"language_model.model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"language_model.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"language_model.model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
77 |
+
"language_model.model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"language_model.model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
79 |
+
"language_model.model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"language_model.model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"language_model.model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"language_model.model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"language_model.model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"language_model.model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"language_model.model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
86 |
+
"language_model.model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"language_model.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"language_model.model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
89 |
+
"language_model.model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"language_model.model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
91 |
+
"language_model.model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"language_model.model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"language_model.model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"language_model.model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"language_model.model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"language_model.model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"language_model.model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
98 |
+
"language_model.model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"language_model.model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"language_model.model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
101 |
+
"language_model.model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"language_model.model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
103 |
+
"language_model.model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"language_model.model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"language_model.model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"language_model.model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"language_model.model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"language_model.model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"language_model.model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
110 |
+
"language_model.model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"language_model.model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"language_model.model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
113 |
+
"language_model.model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"language_model.model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
115 |
+
"language_model.model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"language_model.model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"language_model.model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"language_model.model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"language_model.model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"language_model.model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"language_model.model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
122 |
+
"language_model.model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"language_model.model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"language_model.model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
125 |
+
"language_model.model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"language_model.model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
127 |
+
"language_model.model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"language_model.model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"language_model.model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"language_model.model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"language_model.model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"language_model.model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"language_model.model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
134 |
+
"language_model.model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"language_model.model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"language_model.model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
137 |
+
"language_model.model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"language_model.model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
139 |
+
"language_model.model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"language_model.model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"language_model.model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"language_model.model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"language_model.model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"language_model.model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"language_model.model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
146 |
+
"language_model.model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"language_model.model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"language_model.model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
149 |
+
"language_model.model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"language_model.model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
151 |
+
"language_model.model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"language_model.model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
158 |
+
"language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"language_model.model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
161 |
+
"language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"language_model.model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
163 |
+
"language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"language_model.model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"language_model.model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"language_model.model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"language_model.model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"language_model.model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"language_model.model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
170 |
+
"language_model.model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"language_model.model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"language_model.model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
173 |
+
"language_model.model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
174 |
+
"language_model.model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
175 |
+
"language_model.model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"language_model.model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"language_model.model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"language_model.model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"language_model.model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"language_model.model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
181 |
+
"language_model.model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
182 |
+
"language_model.model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"language_model.model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
184 |
+
"language_model.model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
185 |
+
"language_model.model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
186 |
+
"language_model.model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
187 |
+
"language_model.model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"language_model.model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"language_model.model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"language_model.model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"language_model.model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"language_model.model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
193 |
+
"language_model.model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
194 |
+
"language_model.model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"language_model.model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
196 |
+
"language_model.model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
197 |
+
"language_model.model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"language_model.model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
199 |
+
"language_model.model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"language_model.model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"language_model.model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"language_model.model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"language_model.model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"language_model.model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"language_model.model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
206 |
+
"language_model.model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"language_model.model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"language_model.model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
209 |
+
"language_model.model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"language_model.model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
211 |
+
"language_model.model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"language_model.model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
213 |
+
"language_model.model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
214 |
+
"language_model.model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"language_model.model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
216 |
+
"language_model.model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
217 |
+
"language_model.model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
218 |
+
"language_model.model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"language_model.model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"language_model.model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
221 |
+
"language_model.model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"language_model.model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
223 |
+
"language_model.model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"language_model.model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
225 |
+
"language_model.model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
226 |
+
"language_model.model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
227 |
+
"language_model.model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
228 |
+
"language_model.model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
229 |
+
"language_model.model.layers.25.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
230 |
+
"language_model.model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
231 |
+
"language_model.model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
232 |
+
"language_model.model.layers.25.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
233 |
+
"language_model.model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
234 |
+
"language_model.model.layers.25.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
235 |
+
"language_model.model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
236 |
+
"language_model.model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
237 |
+
"language_model.model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
238 |
+
"language_model.model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
239 |
+
"language_model.model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
240 |
+
"language_model.model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
241 |
+
"language_model.model.layers.26.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
242 |
+
"language_model.model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
243 |
+
"language_model.model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
244 |
+
"language_model.model.layers.26.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
245 |
+
"language_model.model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
246 |
+
"language_model.model.layers.26.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
247 |
+
"language_model.model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
248 |
+
"language_model.model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
249 |
+
"language_model.model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
250 |
+
"language_model.model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
251 |
+
"language_model.model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
252 |
+
"language_model.model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
253 |
+
"language_model.model.layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
254 |
+
"language_model.model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
255 |
+
"language_model.model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
256 |
+
"language_model.model.layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
257 |
+
"language_model.model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
258 |
+
"language_model.model.layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
259 |
+
"language_model.model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
260 |
+
"language_model.model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
261 |
+
"language_model.model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
262 |
+
"language_model.model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
263 |
+
"language_model.model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
264 |
+
"language_model.model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
265 |
+
"language_model.model.layers.28.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
266 |
+
"language_model.model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
267 |
+
"language_model.model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
268 |
+
"language_model.model.layers.28.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
269 |
+
"language_model.model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
270 |
+
"language_model.model.layers.28.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
271 |
+
"language_model.model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
272 |
+
"language_model.model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
273 |
+
"language_model.model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
274 |
+
"language_model.model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
275 |
+
"language_model.model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
276 |
+
"language_model.model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
277 |
+
"language_model.model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
278 |
+
"language_model.model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
279 |
+
"language_model.model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
280 |
+
"language_model.model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
281 |
+
"language_model.model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
282 |
+
"language_model.model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
283 |
+
"language_model.model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
284 |
+
"language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
289 |
+
"language_model.model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
290 |
+
"language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
292 |
+
"language_model.model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
293 |
+
"language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
294 |
+
"language_model.model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
295 |
+
"language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
296 |
+
"language_model.model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
297 |
+
"language_model.model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
298 |
+
"language_model.model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
299 |
+
"language_model.model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
300 |
+
"language_model.model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
301 |
+
"language_model.model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
302 |
+
"language_model.model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
303 |
+
"language_model.model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
304 |
+
"language_model.model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
305 |
+
"language_model.model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
306 |
+
"language_model.model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
307 |
+
"language_model.model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
308 |
+
"language_model.model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
309 |
+
"language_model.model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
310 |
+
"language_model.model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
311 |
+
"language_model.model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
312 |
+
"language_model.model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
313 |
+
"language_model.model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
314 |
+
"language_model.model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
315 |
+
"language_model.model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
316 |
+
"language_model.model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
317 |
+
"language_model.model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
318 |
+
"language_model.model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
319 |
+
"language_model.model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
320 |
+
"language_model.model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
321 |
+
"language_model.model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
322 |
+
"language_model.model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
323 |
+
"language_model.model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
324 |
+
"language_model.model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
325 |
+
"language_model.model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
326 |
+
"language_model.model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
327 |
+
"language_model.model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
328 |
+
"language_model.model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
329 |
+
"language_model.model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
330 |
+
"language_model.model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
331 |
+
"language_model.model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
332 |
+
"language_model.model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
333 |
+
"language_model.model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
334 |
+
"language_model.model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
335 |
+
"language_model.model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
336 |
+
"language_model.model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
337 |
+
"language_model.model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
338 |
+
"language_model.model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
339 |
+
"language_model.model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
340 |
+
"language_model.model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
341 |
+
"language_model.model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
342 |
+
"language_model.model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
343 |
+
"language_model.model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
344 |
+
"language_model.model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
345 |
+
"language_model.model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
346 |
+
"language_model.model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
347 |
+
"language_model.model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
348 |
+
"language_model.model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
349 |
+
"language_model.model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
350 |
+
"language_model.model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
351 |
+
"language_model.model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
352 |
+
"language_model.model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
353 |
+
"language_model.model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
354 |
+
"language_model.model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
355 |
+
"language_model.model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
356 |
+
"language_model.model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
357 |
+
"language_model.model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
358 |
+
"language_model.model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
359 |
+
"language_model.model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
360 |
+
"language_model.model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
361 |
+
"language_model.model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
362 |
+
"language_model.model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
363 |
+
"language_model.model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
364 |
+
"language_model.model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
365 |
+
"language_model.model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
366 |
+
"language_model.model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
367 |
+
"language_model.model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
368 |
+
"language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
369 |
+
"language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
370 |
+
"language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
371 |
+
"language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
372 |
+
"language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
373 |
+
"language_model.model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
374 |
+
"language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
375 |
+
"language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
376 |
+
"language_model.model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
377 |
+
"language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
378 |
+
"language_model.model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
379 |
+
"language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
380 |
+
"language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
381 |
+
"language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
382 |
+
"language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
383 |
+
"language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
384 |
+
"language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
385 |
+
"language_model.model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
386 |
+
"language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
387 |
+
"language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
388 |
+
"language_model.model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
389 |
+
"language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
390 |
+
"language_model.model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
391 |
+
"language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
392 |
+
"language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
393 |
+
"language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
394 |
+
"language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
395 |
+
"language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
396 |
+
"language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
397 |
+
"language_model.model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
398 |
+
"language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
399 |
+
"language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
400 |
+
"language_model.model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
401 |
+
"language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
402 |
+
"language_model.model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
403 |
+
"language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
404 |
+
"language_model.model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
405 |
+
"language_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
406 |
+
"language_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
407 |
+
"language_model.model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
408 |
+
"language_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
409 |
+
"language_model.model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
410 |
+
"language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
411 |
+
"language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
412 |
+
"language_model.model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
413 |
+
"language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
414 |
+
"language_model.model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
415 |
+
"language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
416 |
+
"language_model.model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
417 |
+
"language_model.model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
418 |
+
"language_model.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
419 |
+
"language_model.model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
420 |
+
"language_model.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
421 |
+
"language_model.model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
422 |
+
"language_model.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
423 |
+
"language_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
424 |
+
"language_model.model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
425 |
+
"language_model.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
426 |
+
"language_model.model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
427 |
+
"language_model.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
428 |
+
"language_model.model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
429 |
+
"language_model.model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
430 |
+
"language_model.model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
431 |
+
"language_model.model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
432 |
+
"language_model.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
433 |
+
"language_model.model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
434 |
+
"language_model.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
435 |
+
"language_model.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
436 |
+
"language_model.model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
437 |
+
"language_model.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
438 |
+
"language_model.model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
439 |
+
"language_model.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
440 |
+
"language_model.model.norm.weight": "model-00002-of-00002.safetensors",
|
441 |
+
"mlp1.0.bias": "model-00002-of-00002.safetensors",
|
442 |
+
"mlp1.0.weight": "model-00002-of-00002.safetensors",
|
443 |
+
"mlp1.1.bias": "model-00002-of-00002.safetensors",
|
444 |
+
"mlp1.1.weight": "model-00002-of-00002.safetensors",
|
445 |
+
"mlp1.3.bias": "model-00002-of-00002.safetensors",
|
446 |
+
"mlp1.3.weight": "model-00002-of-00002.safetensors",
|
447 |
+
"vision_model.embeddings.class_embedding": "model-00001-of-00002.safetensors",
|
448 |
+
"vision_model.embeddings.patch_embedding.bias": "model-00001-of-00002.safetensors",
|
449 |
+
"vision_model.embeddings.patch_embedding.weight": "model-00001-of-00002.safetensors",
|
450 |
+
"vision_model.embeddings.position_embedding": "model-00001-of-00002.safetensors",
|
451 |
+
"vision_model.encoder.layers.0.attn.proj.bias": "model-00001-of-00002.safetensors",
|
452 |
+
"vision_model.encoder.layers.0.attn.proj.weight": "model-00001-of-00002.safetensors",
|
453 |
+
"vision_model.encoder.layers.0.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
454 |
+
"vision_model.encoder.layers.0.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
455 |
+
"vision_model.encoder.layers.0.ls1": "model-00001-of-00002.safetensors",
|
456 |
+
"vision_model.encoder.layers.0.ls2": "model-00001-of-00002.safetensors",
|
457 |
+
"vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
458 |
+
"vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
459 |
+
"vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
460 |
+
"vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
461 |
+
"vision_model.encoder.layers.0.norm1.bias": "model-00001-of-00002.safetensors",
|
462 |
+
"vision_model.encoder.layers.0.norm1.weight": "model-00001-of-00002.safetensors",
|
463 |
+
"vision_model.encoder.layers.0.norm2.bias": "model-00001-of-00002.safetensors",
|
464 |
+
"vision_model.encoder.layers.0.norm2.weight": "model-00001-of-00002.safetensors",
|
465 |
+
"vision_model.encoder.layers.1.attn.proj.bias": "model-00001-of-00002.safetensors",
|
466 |
+
"vision_model.encoder.layers.1.attn.proj.weight": "model-00001-of-00002.safetensors",
|
467 |
+
"vision_model.encoder.layers.1.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
468 |
+
"vision_model.encoder.layers.1.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
469 |
+
"vision_model.encoder.layers.1.ls1": "model-00001-of-00002.safetensors",
|
470 |
+
"vision_model.encoder.layers.1.ls2": "model-00001-of-00002.safetensors",
|
471 |
+
"vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
472 |
+
"vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
473 |
+
"vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
474 |
+
"vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
475 |
+
"vision_model.encoder.layers.1.norm1.bias": "model-00001-of-00002.safetensors",
|
476 |
+
"vision_model.encoder.layers.1.norm1.weight": "model-00001-of-00002.safetensors",
|
477 |
+
"vision_model.encoder.layers.1.norm2.bias": "model-00001-of-00002.safetensors",
|
478 |
+
"vision_model.encoder.layers.1.norm2.weight": "model-00001-of-00002.safetensors",
|
479 |
+
"vision_model.encoder.layers.10.attn.proj.bias": "model-00001-of-00002.safetensors",
|
480 |
+
"vision_model.encoder.layers.10.attn.proj.weight": "model-00001-of-00002.safetensors",
|
481 |
+
"vision_model.encoder.layers.10.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
482 |
+
"vision_model.encoder.layers.10.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
483 |
+
"vision_model.encoder.layers.10.ls1": "model-00001-of-00002.safetensors",
|
484 |
+
"vision_model.encoder.layers.10.ls2": "model-00001-of-00002.safetensors",
|
485 |
+
"vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
486 |
+
"vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
487 |
+
"vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
488 |
+
"vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
489 |
+
"vision_model.encoder.layers.10.norm1.bias": "model-00001-of-00002.safetensors",
|
490 |
+
"vision_model.encoder.layers.10.norm1.weight": "model-00001-of-00002.safetensors",
|
491 |
+
"vision_model.encoder.layers.10.norm2.bias": "model-00001-of-00002.safetensors",
|
492 |
+
"vision_model.encoder.layers.10.norm2.weight": "model-00001-of-00002.safetensors",
|
493 |
+
"vision_model.encoder.layers.11.attn.proj.bias": "model-00001-of-00002.safetensors",
|
494 |
+
"vision_model.encoder.layers.11.attn.proj.weight": "model-00001-of-00002.safetensors",
|
495 |
+
"vision_model.encoder.layers.11.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
496 |
+
"vision_model.encoder.layers.11.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
497 |
+
"vision_model.encoder.layers.11.ls1": "model-00001-of-00002.safetensors",
|
498 |
+
"vision_model.encoder.layers.11.ls2": "model-00001-of-00002.safetensors",
|
499 |
+
"vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
500 |
+
"vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
501 |
+
"vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
502 |
+
"vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
503 |
+
"vision_model.encoder.layers.11.norm1.bias": "model-00001-of-00002.safetensors",
|
504 |
+
"vision_model.encoder.layers.11.norm1.weight": "model-00001-of-00002.safetensors",
|
505 |
+
"vision_model.encoder.layers.11.norm2.bias": "model-00001-of-00002.safetensors",
|
506 |
+
"vision_model.encoder.layers.11.norm2.weight": "model-00001-of-00002.safetensors",
|
507 |
+
"vision_model.encoder.layers.12.attn.proj.bias": "model-00001-of-00002.safetensors",
|
508 |
+
"vision_model.encoder.layers.12.attn.proj.weight": "model-00001-of-00002.safetensors",
|
509 |
+
"vision_model.encoder.layers.12.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
510 |
+
"vision_model.encoder.layers.12.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
511 |
+
"vision_model.encoder.layers.12.ls1": "model-00001-of-00002.safetensors",
|
512 |
+
"vision_model.encoder.layers.12.ls2": "model-00001-of-00002.safetensors",
|
513 |
+
"vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
514 |
+
"vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
515 |
+
"vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
516 |
+
"vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
517 |
+
"vision_model.encoder.layers.12.norm1.bias": "model-00001-of-00002.safetensors",
|
518 |
+
"vision_model.encoder.layers.12.norm1.weight": "model-00001-of-00002.safetensors",
|
519 |
+
"vision_model.encoder.layers.12.norm2.bias": "model-00001-of-00002.safetensors",
|
520 |
+
"vision_model.encoder.layers.12.norm2.weight": "model-00001-of-00002.safetensors",
|
521 |
+
"vision_model.encoder.layers.13.attn.proj.bias": "model-00001-of-00002.safetensors",
|
522 |
+
"vision_model.encoder.layers.13.attn.proj.weight": "model-00001-of-00002.safetensors",
|
523 |
+
"vision_model.encoder.layers.13.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
524 |
+
"vision_model.encoder.layers.13.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
525 |
+
"vision_model.encoder.layers.13.ls1": "model-00001-of-00002.safetensors",
|
526 |
+
"vision_model.encoder.layers.13.ls2": "model-00001-of-00002.safetensors",
|
527 |
+
"vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
528 |
+
"vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
529 |
+
"vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
530 |
+
"vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
531 |
+
"vision_model.encoder.layers.13.norm1.bias": "model-00001-of-00002.safetensors",
|
532 |
+
"vision_model.encoder.layers.13.norm1.weight": "model-00001-of-00002.safetensors",
|
533 |
+
"vision_model.encoder.layers.13.norm2.bias": "model-00001-of-00002.safetensors",
|
534 |
+
"vision_model.encoder.layers.13.norm2.weight": "model-00001-of-00002.safetensors",
|
535 |
+
"vision_model.encoder.layers.14.attn.proj.bias": "model-00001-of-00002.safetensors",
|
536 |
+
"vision_model.encoder.layers.14.attn.proj.weight": "model-00001-of-00002.safetensors",
|
537 |
+
"vision_model.encoder.layers.14.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
538 |
+
"vision_model.encoder.layers.14.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
539 |
+
"vision_model.encoder.layers.14.ls1": "model-00001-of-00002.safetensors",
|
540 |
+
"vision_model.encoder.layers.14.ls2": "model-00001-of-00002.safetensors",
|
541 |
+
"vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
542 |
+
"vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
543 |
+
"vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
544 |
+
"vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
545 |
+
"vision_model.encoder.layers.14.norm1.bias": "model-00001-of-00002.safetensors",
|
546 |
+
"vision_model.encoder.layers.14.norm1.weight": "model-00001-of-00002.safetensors",
|
547 |
+
"vision_model.encoder.layers.14.norm2.bias": "model-00001-of-00002.safetensors",
|
548 |
+
"vision_model.encoder.layers.14.norm2.weight": "model-00001-of-00002.safetensors",
|
549 |
+
"vision_model.encoder.layers.15.attn.proj.bias": "model-00001-of-00002.safetensors",
|
550 |
+
"vision_model.encoder.layers.15.attn.proj.weight": "model-00001-of-00002.safetensors",
|
551 |
+
"vision_model.encoder.layers.15.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
552 |
+
"vision_model.encoder.layers.15.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
553 |
+
"vision_model.encoder.layers.15.ls1": "model-00001-of-00002.safetensors",
|
554 |
+
"vision_model.encoder.layers.15.ls2": "model-00001-of-00002.safetensors",
|
555 |
+
"vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
556 |
+
"vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
557 |
+
"vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
558 |
+
"vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
559 |
+
"vision_model.encoder.layers.15.norm1.bias": "model-00001-of-00002.safetensors",
|
560 |
+
"vision_model.encoder.layers.15.norm1.weight": "model-00001-of-00002.safetensors",
|
561 |
+
"vision_model.encoder.layers.15.norm2.bias": "model-00001-of-00002.safetensors",
|
562 |
+
"vision_model.encoder.layers.15.norm2.weight": "model-00001-of-00002.safetensors",
|
563 |
+
"vision_model.encoder.layers.16.attn.proj.bias": "model-00001-of-00002.safetensors",
|
564 |
+
"vision_model.encoder.layers.16.attn.proj.weight": "model-00001-of-00002.safetensors",
|
565 |
+
"vision_model.encoder.layers.16.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
566 |
+
"vision_model.encoder.layers.16.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
567 |
+
"vision_model.encoder.layers.16.ls1": "model-00001-of-00002.safetensors",
|
568 |
+
"vision_model.encoder.layers.16.ls2": "model-00001-of-00002.safetensors",
|
569 |
+
"vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
570 |
+
"vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
571 |
+
"vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
572 |
+
"vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
573 |
+
"vision_model.encoder.layers.16.norm1.bias": "model-00001-of-00002.safetensors",
|
574 |
+
"vision_model.encoder.layers.16.norm1.weight": "model-00001-of-00002.safetensors",
|
575 |
+
"vision_model.encoder.layers.16.norm2.bias": "model-00001-of-00002.safetensors",
|
576 |
+
"vision_model.encoder.layers.16.norm2.weight": "model-00001-of-00002.safetensors",
|
577 |
+
"vision_model.encoder.layers.17.attn.proj.bias": "model-00001-of-00002.safetensors",
|
578 |
+
"vision_model.encoder.layers.17.attn.proj.weight": "model-00001-of-00002.safetensors",
|
579 |
+
"vision_model.encoder.layers.17.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
580 |
+
"vision_model.encoder.layers.17.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
581 |
+
"vision_model.encoder.layers.17.ls1": "model-00001-of-00002.safetensors",
|
582 |
+
"vision_model.encoder.layers.17.ls2": "model-00001-of-00002.safetensors",
|
583 |
+
"vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
584 |
+
"vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
585 |
+
"vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
586 |
+
"vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
587 |
+
"vision_model.encoder.layers.17.norm1.bias": "model-00001-of-00002.safetensors",
|
588 |
+
"vision_model.encoder.layers.17.norm1.weight": "model-00001-of-00002.safetensors",
|
589 |
+
"vision_model.encoder.layers.17.norm2.bias": "model-00001-of-00002.safetensors",
|
590 |
+
"vision_model.encoder.layers.17.norm2.weight": "model-00001-of-00002.safetensors",
|
591 |
+
"vision_model.encoder.layers.18.attn.proj.bias": "model-00001-of-00002.safetensors",
|
592 |
+
"vision_model.encoder.layers.18.attn.proj.weight": "model-00001-of-00002.safetensors",
|
593 |
+
"vision_model.encoder.layers.18.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
594 |
+
"vision_model.encoder.layers.18.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
595 |
+
"vision_model.encoder.layers.18.ls1": "model-00001-of-00002.safetensors",
|
596 |
+
"vision_model.encoder.layers.18.ls2": "model-00001-of-00002.safetensors",
|
597 |
+
"vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
598 |
+
"vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
599 |
+
"vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
600 |
+
"vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
601 |
+
"vision_model.encoder.layers.18.norm1.bias": "model-00001-of-00002.safetensors",
|
602 |
+
"vision_model.encoder.layers.18.norm1.weight": "model-00001-of-00002.safetensors",
|
603 |
+
"vision_model.encoder.layers.18.norm2.bias": "model-00001-of-00002.safetensors",
|
604 |
+
"vision_model.encoder.layers.18.norm2.weight": "model-00001-of-00002.safetensors",
|
605 |
+
"vision_model.encoder.layers.19.attn.proj.bias": "model-00001-of-00002.safetensors",
|
606 |
+
"vision_model.encoder.layers.19.attn.proj.weight": "model-00001-of-00002.safetensors",
|
607 |
+
"vision_model.encoder.layers.19.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
608 |
+
"vision_model.encoder.layers.19.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
609 |
+
"vision_model.encoder.layers.19.ls1": "model-00001-of-00002.safetensors",
|
610 |
+
"vision_model.encoder.layers.19.ls2": "model-00001-of-00002.safetensors",
|
611 |
+
"vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
612 |
+
"vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
613 |
+
"vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
614 |
+
"vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
615 |
+
"vision_model.encoder.layers.19.norm1.bias": "model-00001-of-00002.safetensors",
|
616 |
+
"vision_model.encoder.layers.19.norm1.weight": "model-00001-of-00002.safetensors",
|
617 |
+
"vision_model.encoder.layers.19.norm2.bias": "model-00001-of-00002.safetensors",
|
618 |
+
"vision_model.encoder.layers.19.norm2.weight": "model-00001-of-00002.safetensors",
|
619 |
+
"vision_model.encoder.layers.2.attn.proj.bias": "model-00001-of-00002.safetensors",
|
620 |
+
"vision_model.encoder.layers.2.attn.proj.weight": "model-00001-of-00002.safetensors",
|
621 |
+
"vision_model.encoder.layers.2.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
622 |
+
"vision_model.encoder.layers.2.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
623 |
+
"vision_model.encoder.layers.2.ls1": "model-00001-of-00002.safetensors",
|
624 |
+
"vision_model.encoder.layers.2.ls2": "model-00001-of-00002.safetensors",
|
625 |
+
"vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
626 |
+
"vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
627 |
+
"vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
628 |
+
"vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
629 |
+
"vision_model.encoder.layers.2.norm1.bias": "model-00001-of-00002.safetensors",
|
630 |
+
"vision_model.encoder.layers.2.norm1.weight": "model-00001-of-00002.safetensors",
|
631 |
+
"vision_model.encoder.layers.2.norm2.bias": "model-00001-of-00002.safetensors",
|
632 |
+
"vision_model.encoder.layers.2.norm2.weight": "model-00001-of-00002.safetensors",
|
633 |
+
"vision_model.encoder.layers.20.attn.proj.bias": "model-00001-of-00002.safetensors",
|
634 |
+
"vision_model.encoder.layers.20.attn.proj.weight": "model-00001-of-00002.safetensors",
|
635 |
+
"vision_model.encoder.layers.20.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
636 |
+
"vision_model.encoder.layers.20.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
637 |
+
"vision_model.encoder.layers.20.ls1": "model-00001-of-00002.safetensors",
|
638 |
+
"vision_model.encoder.layers.20.ls2": "model-00001-of-00002.safetensors",
|
639 |
+
"vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
640 |
+
"vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
641 |
+
"vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
642 |
+
"vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
643 |
+
"vision_model.encoder.layers.20.norm1.bias": "model-00001-of-00002.safetensors",
|
644 |
+
"vision_model.encoder.layers.20.norm1.weight": "model-00001-of-00002.safetensors",
|
645 |
+
"vision_model.encoder.layers.20.norm2.bias": "model-00001-of-00002.safetensors",
|
646 |
+
"vision_model.encoder.layers.20.norm2.weight": "model-00001-of-00002.safetensors",
|
647 |
+
"vision_model.encoder.layers.21.attn.proj.bias": "model-00001-of-00002.safetensors",
|
648 |
+
"vision_model.encoder.layers.21.attn.proj.weight": "model-00001-of-00002.safetensors",
|
649 |
+
"vision_model.encoder.layers.21.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
650 |
+
"vision_model.encoder.layers.21.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
651 |
+
"vision_model.encoder.layers.21.ls1": "model-00001-of-00002.safetensors",
|
652 |
+
"vision_model.encoder.layers.21.ls2": "model-00001-of-00002.safetensors",
|
653 |
+
"vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
654 |
+
"vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
655 |
+
"vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
656 |
+
"vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
657 |
+
"vision_model.encoder.layers.21.norm1.bias": "model-00001-of-00002.safetensors",
|
658 |
+
"vision_model.encoder.layers.21.norm1.weight": "model-00001-of-00002.safetensors",
|
659 |
+
"vision_model.encoder.layers.21.norm2.bias": "model-00001-of-00002.safetensors",
|
660 |
+
"vision_model.encoder.layers.21.norm2.weight": "model-00001-of-00002.safetensors",
|
661 |
+
"vision_model.encoder.layers.22.attn.proj.bias": "model-00001-of-00002.safetensors",
|
662 |
+
"vision_model.encoder.layers.22.attn.proj.weight": "model-00001-of-00002.safetensors",
|
663 |
+
"vision_model.encoder.layers.22.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
664 |
+
"vision_model.encoder.layers.22.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
665 |
+
"vision_model.encoder.layers.22.ls1": "model-00001-of-00002.safetensors",
|
666 |
+
"vision_model.encoder.layers.22.ls2": "model-00001-of-00002.safetensors",
|
667 |
+
"vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
668 |
+
"vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
669 |
+
"vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
670 |
+
"vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
671 |
+
"vision_model.encoder.layers.22.norm1.bias": "model-00001-of-00002.safetensors",
|
672 |
+
"vision_model.encoder.layers.22.norm1.weight": "model-00001-of-00002.safetensors",
|
673 |
+
"vision_model.encoder.layers.22.norm2.bias": "model-00001-of-00002.safetensors",
|
674 |
+
"vision_model.encoder.layers.22.norm2.weight": "model-00001-of-00002.safetensors",
|
675 |
+
"vision_model.encoder.layers.23.attn.proj.bias": "model-00001-of-00002.safetensors",
|
676 |
+
"vision_model.encoder.layers.23.attn.proj.weight": "model-00001-of-00002.safetensors",
|
677 |
+
"vision_model.encoder.layers.23.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
678 |
+
"vision_model.encoder.layers.23.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
679 |
+
"vision_model.encoder.layers.23.ls1": "model-00001-of-00002.safetensors",
|
680 |
+
"vision_model.encoder.layers.23.ls2": "model-00001-of-00002.safetensors",
|
681 |
+
"vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
682 |
+
"vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
683 |
+
"vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
684 |
+
"vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
685 |
+
"vision_model.encoder.layers.23.norm1.bias": "model-00001-of-00002.safetensors",
|
686 |
+
"vision_model.encoder.layers.23.norm1.weight": "model-00001-of-00002.safetensors",
|
687 |
+
"vision_model.encoder.layers.23.norm2.bias": "model-00001-of-00002.safetensors",
|
688 |
+
"vision_model.encoder.layers.23.norm2.weight": "model-00001-of-00002.safetensors",
|
689 |
+
"vision_model.encoder.layers.3.attn.proj.bias": "model-00001-of-00002.safetensors",
|
690 |
+
"vision_model.encoder.layers.3.attn.proj.weight": "model-00001-of-00002.safetensors",
|
691 |
+
"vision_model.encoder.layers.3.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
692 |
+
"vision_model.encoder.layers.3.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
693 |
+
"vision_model.encoder.layers.3.ls1": "model-00001-of-00002.safetensors",
|
694 |
+
"vision_model.encoder.layers.3.ls2": "model-00001-of-00002.safetensors",
|
695 |
+
"vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
696 |
+
"vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
697 |
+
"vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
698 |
+
"vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
699 |
+
"vision_model.encoder.layers.3.norm1.bias": "model-00001-of-00002.safetensors",
|
700 |
+
"vision_model.encoder.layers.3.norm1.weight": "model-00001-of-00002.safetensors",
|
701 |
+
"vision_model.encoder.layers.3.norm2.bias": "model-00001-of-00002.safetensors",
|
702 |
+
"vision_model.encoder.layers.3.norm2.weight": "model-00001-of-00002.safetensors",
|
703 |
+
"vision_model.encoder.layers.4.attn.proj.bias": "model-00001-of-00002.safetensors",
|
704 |
+
"vision_model.encoder.layers.4.attn.proj.weight": "model-00001-of-00002.safetensors",
|
705 |
+
"vision_model.encoder.layers.4.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
706 |
+
"vision_model.encoder.layers.4.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
707 |
+
"vision_model.encoder.layers.4.ls1": "model-00001-of-00002.safetensors",
|
708 |
+
"vision_model.encoder.layers.4.ls2": "model-00001-of-00002.safetensors",
|
709 |
+
"vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
710 |
+
"vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
711 |
+
"vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
712 |
+
"vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
713 |
+
"vision_model.encoder.layers.4.norm1.bias": "model-00001-of-00002.safetensors",
|
714 |
+
"vision_model.encoder.layers.4.norm1.weight": "model-00001-of-00002.safetensors",
|
715 |
+
"vision_model.encoder.layers.4.norm2.bias": "model-00001-of-00002.safetensors",
|
716 |
+
"vision_model.encoder.layers.4.norm2.weight": "model-00001-of-00002.safetensors",
|
717 |
+
"vision_model.encoder.layers.5.attn.proj.bias": "model-00001-of-00002.safetensors",
|
718 |
+
"vision_model.encoder.layers.5.attn.proj.weight": "model-00001-of-00002.safetensors",
|
719 |
+
"vision_model.encoder.layers.5.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
720 |
+
"vision_model.encoder.layers.5.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
721 |
+
"vision_model.encoder.layers.5.ls1": "model-00001-of-00002.safetensors",
|
722 |
+
"vision_model.encoder.layers.5.ls2": "model-00001-of-00002.safetensors",
|
723 |
+
"vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
724 |
+
"vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
725 |
+
"vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
726 |
+
"vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
727 |
+
"vision_model.encoder.layers.5.norm1.bias": "model-00001-of-00002.safetensors",
|
728 |
+
"vision_model.encoder.layers.5.norm1.weight": "model-00001-of-00002.safetensors",
|
729 |
+
"vision_model.encoder.layers.5.norm2.bias": "model-00001-of-00002.safetensors",
|
730 |
+
"vision_model.encoder.layers.5.norm2.weight": "model-00001-of-00002.safetensors",
|
731 |
+
"vision_model.encoder.layers.6.attn.proj.bias": "model-00001-of-00002.safetensors",
|
732 |
+
"vision_model.encoder.layers.6.attn.proj.weight": "model-00001-of-00002.safetensors",
|
733 |
+
"vision_model.encoder.layers.6.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
734 |
+
"vision_model.encoder.layers.6.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
735 |
+
"vision_model.encoder.layers.6.ls1": "model-00001-of-00002.safetensors",
|
736 |
+
"vision_model.encoder.layers.6.ls2": "model-00001-of-00002.safetensors",
|
737 |
+
"vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
738 |
+
"vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
739 |
+
"vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
740 |
+
"vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
741 |
+
"vision_model.encoder.layers.6.norm1.bias": "model-00001-of-00002.safetensors",
|
742 |
+
"vision_model.encoder.layers.6.norm1.weight": "model-00001-of-00002.safetensors",
|
743 |
+
"vision_model.encoder.layers.6.norm2.bias": "model-00001-of-00002.safetensors",
|
744 |
+
"vision_model.encoder.layers.6.norm2.weight": "model-00001-of-00002.safetensors",
|
745 |
+
"vision_model.encoder.layers.7.attn.proj.bias": "model-00001-of-00002.safetensors",
|
746 |
+
"vision_model.encoder.layers.7.attn.proj.weight": "model-00001-of-00002.safetensors",
|
747 |
+
"vision_model.encoder.layers.7.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
748 |
+
"vision_model.encoder.layers.7.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
749 |
+
"vision_model.encoder.layers.7.ls1": "model-00001-of-00002.safetensors",
|
750 |
+
"vision_model.encoder.layers.7.ls2": "model-00001-of-00002.safetensors",
|
751 |
+
"vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
752 |
+
"vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
753 |
+
"vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
754 |
+
"vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
755 |
+
"vision_model.encoder.layers.7.norm1.bias": "model-00001-of-00002.safetensors",
|
756 |
+
"vision_model.encoder.layers.7.norm1.weight": "model-00001-of-00002.safetensors",
|
757 |
+
"vision_model.encoder.layers.7.norm2.bias": "model-00001-of-00002.safetensors",
|
758 |
+
"vision_model.encoder.layers.7.norm2.weight": "model-00001-of-00002.safetensors",
|
759 |
+
"vision_model.encoder.layers.8.attn.proj.bias": "model-00001-of-00002.safetensors",
|
760 |
+
"vision_model.encoder.layers.8.attn.proj.weight": "model-00001-of-00002.safetensors",
|
761 |
+
"vision_model.encoder.layers.8.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
762 |
+
"vision_model.encoder.layers.8.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
763 |
+
"vision_model.encoder.layers.8.ls1": "model-00001-of-00002.safetensors",
|
764 |
+
"vision_model.encoder.layers.8.ls2": "model-00001-of-00002.safetensors",
|
765 |
+
"vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
766 |
+
"vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
767 |
+
"vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
768 |
+
"vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
769 |
+
"vision_model.encoder.layers.8.norm1.bias": "model-00001-of-00002.safetensors",
|
770 |
+
"vision_model.encoder.layers.8.norm1.weight": "model-00001-of-00002.safetensors",
|
771 |
+
"vision_model.encoder.layers.8.norm2.bias": "model-00001-of-00002.safetensors",
|
772 |
+
"vision_model.encoder.layers.8.norm2.weight": "model-00001-of-00002.safetensors",
|
773 |
+
"vision_model.encoder.layers.9.attn.proj.bias": "model-00001-of-00002.safetensors",
|
774 |
+
"vision_model.encoder.layers.9.attn.proj.weight": "model-00001-of-00002.safetensors",
|
775 |
+
"vision_model.encoder.layers.9.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
776 |
+
"vision_model.encoder.layers.9.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
777 |
+
"vision_model.encoder.layers.9.ls1": "model-00001-of-00002.safetensors",
|
778 |
+
"vision_model.encoder.layers.9.ls2": "model-00001-of-00002.safetensors",
|
779 |
+
"vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
780 |
+
"vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
781 |
+
"vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
782 |
+
"vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
783 |
+
"vision_model.encoder.layers.9.norm1.bias": "model-00001-of-00002.safetensors",
|
784 |
+
"vision_model.encoder.layers.9.norm1.weight": "model-00001-of-00002.safetensors",
|
785 |
+
"vision_model.encoder.layers.9.norm2.bias": "model-00001-of-00002.safetensors",
|
786 |
+
"vision_model.encoder.layers.9.norm2.weight": "model-00001-of-00002.safetensors"
|
787 |
+
}
|
788 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>",
|
16 |
+
"<img>",
|
17 |
+
"</img>",
|
18 |
+
"<IMG_CONTEXT>",
|
19 |
+
"<quad>",
|
20 |
+
"</quad>",
|
21 |
+
"<ref>",
|
22 |
+
"</ref>",
|
23 |
+
"<box>",
|
24 |
+
"</box>"
|
25 |
+
],
|
26 |
+
"eos_token": {
|
27 |
+
"content": "<|im_end|>",
|
28 |
+
"lstrip": false,
|
29 |
+
"normalized": false,
|
30 |
+
"rstrip": false,
|
31 |
+
"single_word": false
|
32 |
+
},
|
33 |
+
"pad_token": {
|
34 |
+
"content": "<|endoftext|>",
|
35 |
+
"lstrip": false,
|
36 |
+
"normalized": false,
|
37 |
+
"rstrip": false,
|
38 |
+
"single_word": false
|
39 |
+
}
|
40 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": false,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"151643": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"151644": {
|
15 |
+
"content": "<|im_start|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"151645": {
|
23 |
+
"content": "<|im_end|>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
},
|
30 |
+
"151646": {
|
31 |
+
"content": "<|object_ref_start|>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": true
|
37 |
+
},
|
38 |
+
"151647": {
|
39 |
+
"content": "<|object_ref_end|>",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": false,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false,
|
44 |
+
"special": true
|
45 |
+
},
|
46 |
+
"151648": {
|
47 |
+
"content": "<|box_start|>",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": false,
|
50 |
+
"rstrip": false,
|
51 |
+
"single_word": false,
|
52 |
+
"special": true
|
53 |
+
},
|
54 |
+
"151649": {
|
55 |
+
"content": "<|box_end|>",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": false,
|
58 |
+
"rstrip": false,
|
59 |
+
"single_word": false,
|
60 |
+
"special": true
|
61 |
+
},
|
62 |
+
"151650": {
|
63 |
+
"content": "<|quad_start|>",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": false,
|
66 |
+
"rstrip": false,
|
67 |
+
"single_word": false,
|
68 |
+
"special": true
|
69 |
+
},
|
70 |
+
"151651": {
|
71 |
+
"content": "<|quad_end|>",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": false,
|
74 |
+
"rstrip": false,
|
75 |
+
"single_word": false,
|
76 |
+
"special": true
|
77 |
+
},
|
78 |
+
"151652": {
|
79 |
+
"content": "<|vision_start|>",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": false,
|
82 |
+
"rstrip": false,
|
83 |
+
"single_word": false,
|
84 |
+
"special": true
|
85 |
+
},
|
86 |
+
"151653": {
|
87 |
+
"content": "<|vision_end|>",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": false,
|
90 |
+
"rstrip": false,
|
91 |
+
"single_word": false,
|
92 |
+
"special": true
|
93 |
+
},
|
94 |
+
"151654": {
|
95 |
+
"content": "<|vision_pad|>",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": false,
|
98 |
+
"rstrip": false,
|
99 |
+
"single_word": false,
|
100 |
+
"special": true
|
101 |
+
},
|
102 |
+
"151655": {
|
103 |
+
"content": "<|image_pad|>",
|
104 |
+
"lstrip": false,
|
105 |
+
"normalized": false,
|
106 |
+
"rstrip": false,
|
107 |
+
"single_word": false,
|
108 |
+
"special": true
|
109 |
+
},
|
110 |
+
"151656": {
|
111 |
+
"content": "<|video_pad|>",
|
112 |
+
"lstrip": false,
|
113 |
+
"normalized": false,
|
114 |
+
"rstrip": false,
|
115 |
+
"single_word": false,
|
116 |
+
"special": true
|
117 |
+
},
|
118 |
+
"151657": {
|
119 |
+
"content": "<tool_call>",
|
120 |
+
"lstrip": false,
|
121 |
+
"normalized": false,
|
122 |
+
"rstrip": false,
|
123 |
+
"single_word": false,
|
124 |
+
"special": false
|
125 |
+
},
|
126 |
+
"151658": {
|
127 |
+
"content": "</tool_call>",
|
128 |
+
"lstrip": false,
|
129 |
+
"normalized": false,
|
130 |
+
"rstrip": false,
|
131 |
+
"single_word": false,
|
132 |
+
"special": false
|
133 |
+
},
|
134 |
+
"151659": {
|
135 |
+
"content": "<|fim_prefix|>",
|
136 |
+
"lstrip": false,
|
137 |
+
"normalized": false,
|
138 |
+
"rstrip": false,
|
139 |
+
"single_word": false,
|
140 |
+
"special": false
|
141 |
+
},
|
142 |
+
"151660": {
|
143 |
+
"content": "<|fim_middle|>",
|
144 |
+
"lstrip": false,
|
145 |
+
"normalized": false,
|
146 |
+
"rstrip": false,
|
147 |
+
"single_word": false,
|
148 |
+
"special": false
|
149 |
+
},
|
150 |
+
"151661": {
|
151 |
+
"content": "<|fim_suffix|>",
|
152 |
+
"lstrip": false,
|
153 |
+
"normalized": false,
|
154 |
+
"rstrip": false,
|
155 |
+
"single_word": false,
|
156 |
+
"special": false
|
157 |
+
},
|
158 |
+
"151662": {
|
159 |
+
"content": "<|fim_pad|>",
|
160 |
+
"lstrip": false,
|
161 |
+
"normalized": false,
|
162 |
+
"rstrip": false,
|
163 |
+
"single_word": false,
|
164 |
+
"special": false
|
165 |
+
},
|
166 |
+
"151663": {
|
167 |
+
"content": "<|repo_name|>",
|
168 |
+
"lstrip": false,
|
169 |
+
"normalized": false,
|
170 |
+
"rstrip": false,
|
171 |
+
"single_word": false,
|
172 |
+
"special": false
|
173 |
+
},
|
174 |
+
"151664": {
|
175 |
+
"content": "<|file_sep|>",
|
176 |
+
"lstrip": false,
|
177 |
+
"normalized": false,
|
178 |
+
"rstrip": false,
|
179 |
+
"single_word": false,
|
180 |
+
"special": false
|
181 |
+
},
|
182 |
+
"151665": {
|
183 |
+
"content": "<img>",
|
184 |
+
"lstrip": false,
|
185 |
+
"normalized": false,
|
186 |
+
"rstrip": false,
|
187 |
+
"single_word": false,
|
188 |
+
"special": true
|
189 |
+
},
|
190 |
+
"151666": {
|
191 |
+
"content": "</img>",
|
192 |
+
"lstrip": false,
|
193 |
+
"normalized": false,
|
194 |
+
"rstrip": false,
|
195 |
+
"single_word": false,
|
196 |
+
"special": true
|
197 |
+
},
|
198 |
+
"151667": {
|
199 |
+
"content": "<IMG_CONTEXT>",
|
200 |
+
"lstrip": false,
|
201 |
+
"normalized": false,
|
202 |
+
"rstrip": false,
|
203 |
+
"single_word": false,
|
204 |
+
"special": true
|
205 |
+
},
|
206 |
+
"151668": {
|
207 |
+
"content": "<quad>",
|
208 |
+
"lstrip": false,
|
209 |
+
"normalized": false,
|
210 |
+
"rstrip": false,
|
211 |
+
"single_word": false,
|
212 |
+
"special": true
|
213 |
+
},
|
214 |
+
"151669": {
|
215 |
+
"content": "</quad>",
|
216 |
+
"lstrip": false,
|
217 |
+
"normalized": false,
|
218 |
+
"rstrip": false,
|
219 |
+
"single_word": false,
|
220 |
+
"special": true
|
221 |
+
},
|
222 |
+
"151670": {
|
223 |
+
"content": "<ref>",
|
224 |
+
"lstrip": false,
|
225 |
+
"normalized": false,
|
226 |
+
"rstrip": false,
|
227 |
+
"single_word": false,
|
228 |
+
"special": true
|
229 |
+
},
|
230 |
+
"151671": {
|
231 |
+
"content": "</ref>",
|
232 |
+
"lstrip": false,
|
233 |
+
"normalized": false,
|
234 |
+
"rstrip": false,
|
235 |
+
"single_word": false,
|
236 |
+
"special": true
|
237 |
+
},
|
238 |
+
"151672": {
|
239 |
+
"content": "<box>",
|
240 |
+
"lstrip": false,
|
241 |
+
"normalized": false,
|
242 |
+
"rstrip": false,
|
243 |
+
"single_word": false,
|
244 |
+
"special": true
|
245 |
+
},
|
246 |
+
"151673": {
|
247 |
+
"content": "</box>",
|
248 |
+
"lstrip": false,
|
249 |
+
"normalized": false,
|
250 |
+
"rstrip": false,
|
251 |
+
"single_word": false,
|
252 |
+
"special": true
|
253 |
+
}
|
254 |
+
},
|
255 |
+
"additional_special_tokens": [
|
256 |
+
"<|im_start|>",
|
257 |
+
"<|im_end|>",
|
258 |
+
"<|object_ref_start|>",
|
259 |
+
"<|object_ref_end|>",
|
260 |
+
"<|box_start|>",
|
261 |
+
"<|box_end|>",
|
262 |
+
"<|quad_start|>",
|
263 |
+
"<|quad_end|>",
|
264 |
+
"<|vision_start|>",
|
265 |
+
"<|vision_end|>",
|
266 |
+
"<|vision_pad|>",
|
267 |
+
"<|image_pad|>",
|
268 |
+
"<|video_pad|>",
|
269 |
+
"<img>",
|
270 |
+
"</img>",
|
271 |
+
"<IMG_CONTEXT>",
|
272 |
+
"<quad>",
|
273 |
+
"</quad>",
|
274 |
+
"<ref>",
|
275 |
+
"</ref>",
|
276 |
+
"<box>",
|
277 |
+
"</box>"
|
278 |
+
],
|
279 |
+
"bos_token": null,
|
280 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
281 |
+
"clean_up_tokenization_spaces": false,
|
282 |
+
"eos_token": "<|im_end|>",
|
283 |
+
"errors": "replace",
|
284 |
+
"extra_special_tokens": {},
|
285 |
+
"model_max_length": 16384,
|
286 |
+
"pad_token": "<|endoftext|>",
|
287 |
+
"split_special_tokens": false,
|
288 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
289 |
+
"unk_token": null
|
290 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|