--- license: mit tags: - audio-feature-extraction - speech-language-models - gpt4-o - tokenizer - codec-representation - text-to-speech - automatic-speech-recognition --- # WavTokenizer: SOTA Discrete Codec Models With Forty Tokens Per Second for Audio Language Modeling [![arXiv](https://img.shields.io/badge/arXiv-Paper-.svg)](https://arxiv.org/abs/2408.16532) [![demo](https://img.shields.io/badge/WanTokenizer-Demo-red)](https://wavtokenizer.github.io/) [![model](https://img.shields.io/badge/%F0%9F%A4%97%20WavTokenizer-Models-blue)](https://huggingface.co./novateur/WavTokenizer) ### 🎉🎉 with WavTokenizer, you can represent speech, music, and audio with only 40 tokens per second! ### 🎉🎉 with WavTokenizer, You can get strong reconstruction results. ### 🎉🎉 WavTokenizer owns rich semantic information and is build for audio language models such as GPT4-o. # 🔥 News - *2024.08*: We release WavTokenizer on arxiv. ![result](result.png) ## Installation To use WavTokenizer, install it using: ```bash conda create -n wavtokenizer python=3.9 conda activate wavtokenizer pip install -r requirements.txt ``` ## Infer ### Part1: Reconstruct audio from raw wav ```python from encoder.utils import convert_audio import torchaudio import torch from decoder.pretrained import WavTokenizer device=torch.device('cpu') config_path = "./configs/xxx.yaml" model_path = "./xxx.ckpt" audio_outpath = "xxx" wavtokenizer = WavTokenizer.from_pretrained0802(config_path, model_path) wavtokenizer = wavtokenizer.to(device) wav, sr = torchaudio.load(audio_path) wav = convert_audio(wav, sr, 24000, 1) bandwidth_id = torch.tensor([0]) wav=wav.to(device) features,discrete_code= wavtokenizer.encode_infer(wav, bandwidth_id=bandwidth_id) audio_out = wavtokenizer.decode(features, bandwidth_id=bandwidth_id) torchaudio.save(audio_outpath, audio_out, sample_rate=24000, encoding='PCM_S', bits_per_sample=16) ``` ### Part2: Generating discrete codecs ```python from encoder.utils import convert_audio import torchaudio import torch from decoder.pretrained import WavTokenizer device=torch.device('cpu') config_path = "./configs/xxx.yaml" model_path = "./xxx.ckpt" wavtokenizer = WavTokenizer.from_pretrained0802(config_path, model_path) wavtokenizer = wavtokenizer.to(device) wav, sr = torchaudio.load(audio_path) wav = convert_audio(wav, sr, 24000, 1) bandwidth_id = torch.tensor([0]) wav=wav.to(device) _,discrete_code= wavtokenizer.encode_infer(wav, bandwidth_id=bandwidth_id) print(discrete_code) ``` ### Part3: Audio reconstruction through codecs ```python # audio_tokens [n_q,1,t]/[n_q,t] features = wavtokenizer.codes_to_features(audio_tokens) bandwidth_id = torch.tensor([0]) audio_out = wavtokenizer.decode(features, bandwidth_id=bandwidth_id) ``` ## Available models 🤗 links to the Huggingface model hub. | Model name | HuggingFace | Corpus | Token/s | Domain | Open-Source | |:--------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:--------:|:---------:|:----------:|:------:| | WavTokenizer-small-600-24k-4096 | [🤗](https://huggingface.co./novateur/WavTokenizer/blob/main/WavTokenizer_small_600_24k_4096.ckpt) | LibriTTS | 40 | Speech | √ | | WavTokenizer-small-320-24k-4096 | [🤗](https://huggingface.co./novateur/WavTokenizer/blob/main/WavTokenizer_small_320_24k_4096.ckpt) | LibriTTS | 75 | Speech | √| | WavTokenizer-medium-600-24k-4096 | [🤗](https://github.com/jishengpeng/wavtokenizer) | 10000 Hours | 40 | Speech, Audio, Music | Coming Soon| | WavTokenizer-medium-320-24k-4096 | [🤗](https://github.com/jishengpeng/wavtokenizer) | 10000 Hours | 75 | Speech, Audio, Music | Coming Soon| | WavTokenizer-large-600-24k-4096 | [🤗](https://github.com/jishengpeng/wavtokenizer) | 80000 Hours | 40 | Speech, Audio, Music | Coming Soon| | WavTokenizer-large-320-24k-4096 | [🤗](https://github.com/jishengpeng/wavtokenizer) | 80000 Hours | 75 | Speech, Audio, Music | Coming Soon | ## Training ### Step1: Prepare train dataset ```python # Process the data into a form similar to ./data/demo.txt ``` ### Step2: Modifying configuration files ```python # ./configs/xxx.yaml # Modify the values of parameters such as batch_size, filelist_path, save_dir, device ``` ### Step3: Start training process Refer to [Pytorch Lightning documentation](https://lightning.ai/docs/pytorch/stable/) for details about customizing the training pipeline. ```bash cd ./WavTokenizer python train.py fit --config ./configs/xxx.yaml ``` ## Citation If this code contributes to your research, please cite our work, Language-Codec and WavTokenizer: ``` @article{ji2024wavtokenizer, title={Wavtokenizer: an efficient acoustic discrete codec tokenizer for audio language modeling}, author={Ji, Shengpeng and Jiang, Ziyue and Wang, Wen and Chen, Yifu and Fang, Minghui and Zuo, Jialong and Yang, Qian and Cheng, Xize and Wang, Zehan and Li, Ruiqi and others}, journal={arXiv preprint arXiv:2408.16532}, year={2024} } @article{ji2024language, title={Language-codec: Reducing the gaps between discrete codec representation and speech language models}, author={Ji, Shengpeng and Fang, Minghui and Jiang, Ziyue and Huang, Rongjie and Zuo, Jialung and Wang, Shulei and Zhao, Zhou}, journal={arXiv preprint arXiv:2402.12208}, year={2024} } ```