Text-to-Image
Diffusers
Safetensors
StableDiffusionPipeline
stable-diffusion
stable-diffusion-diffusers
Inference Endpoints
bokyeong1015 commited on
Commit
2133b8e
·
1 Parent(s): d945009

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -4
README.md CHANGED
@@ -37,7 +37,7 @@ extra_gated_heading: Please read the LICENSE to access this model
37
 
38
  # BK-SDM-2M Model Card
39
 
40
- BK-SDM-{**Base-2M**, [**Small-2M**](https://huggingface.co/nota-ai/bk-sdm-small-2m), **Tiny-2M**} are pretrained with **10× more data** (2.3M LAION image-text pairs) than our previous release.
41
  - Block-removed Knowledge-distilled Stable Diffusion Model (BK-SDM) is an architecturally compressed SDM for efficient text-to-image synthesis.
42
  - The previous BK-SDM-{[Base](https://huggingface.co/nota-ai/bk-sdm-base), [Small](https://huggingface.co/nota-ai/bk-sdm-small), [Tiny](https://huggingface.co/nota-ai/bk-sdm-tiny)} were obtained via distillation pretraining on 0.22M LAION pairs.
43
  - Resources for more information: [Paper](https://arxiv.org/abs/2305.15798), [GitHub](https://github.com/Nota-NetsPresso/BK-SDM), [Demo]( https://huggingface.co/spaces/nota-ai/compressed-stable-diffusion).
@@ -75,13 +75,20 @@ Adhering to the [U-Net architecture](https://huggingface.co/nota-ai/bk-sdm-small
75
 
76
  ## Experimental Results
77
 
78
- The following table shows the zero-shot results on 30K samples from the MS-COCO validation split. After generating 512×512 images with the PNDM scheduler and 25 denoising steps, we downsampled them to 256×256 for evaluating generation scores. Our models were drawn at the 50K-th training iteration.
 
 
79
 
80
  | Model | FID↓ | IS↑ | CLIP Score↑<br>(ViT-g/14) | # Params,<br>U-Net | # Params,<br>Whole SDM |
81
  |:---:|:---:|:---:|:---:|:---:|:---:|
82
  | [Stable Diffusion v1.4](https://huggingface.co/CompVis/stable-diffusion-v1-4) | 13.05 | 36.76 | 0.2958 | 0.86B | 1.04B |
 
 
83
  | [BK-SDM-Small](https://huggingface.co/nota-ai/bk-sdm-small) (Ours) | 16.98 | 31.68 | 0.2677 | 0.49B | 0.66B |
84
- | [**BK-SDM-Small-2M**](https://huggingface.co/nota-ai/bk-sdm-small-2m) (Ours) | 17.05 | 33.10 | 0.2734 | 0.49B | 0.66B |
 
 
 
85
 
86
 
87
  ### Effect of Different Data Sizes for Training BK-SDM-Small
@@ -97,6 +104,12 @@ Furthermore, with the growth in data volume, visual results become more favorabl
97
  <img alt="Visual results with different data sizes" img src="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/assets-bk-sdm/fig_results_data_size.png" width="100%">
98
  </center>
99
 
 
 
 
 
 
 
100
 
101
  # Uses
102
  Follow [the usage guidelines of Stable Diffusion v1](https://huggingface.co/CompVis/stable-diffusion-v1-4#uses).
@@ -128,4 +141,4 @@ Follow [the usage guidelines of Stable Diffusion v1](https://huggingface.co/Comp
128
  }
129
  ```
130
 
131
- *This model card was written by Bo-Kyeong Kim and is based on the [Stable Diffusion v1 model card]( https://huggingface.co/CompVis/stable-diffusion-v1-4).*
 
37
 
38
  # BK-SDM-2M Model Card
39
 
40
+ BK-SDM-{[**Base-2M**](https://huggingface.co/nota-ai/bk-sdm-base-2m), [**Small-2M**](https://huggingface.co/nota-ai/bk-sdm-small-2m), [**Tiny-2M**](https://huggingface.co/nota-ai/bk-sdm-tiny-2m)} are pretrained with **10× more data** (2.3M LAION image-text pairs) compared to our previous release.
41
  - Block-removed Knowledge-distilled Stable Diffusion Model (BK-SDM) is an architecturally compressed SDM for efficient text-to-image synthesis.
42
  - The previous BK-SDM-{[Base](https://huggingface.co/nota-ai/bk-sdm-base), [Small](https://huggingface.co/nota-ai/bk-sdm-small), [Tiny](https://huggingface.co/nota-ai/bk-sdm-tiny)} were obtained via distillation pretraining on 0.22M LAION pairs.
43
  - Resources for more information: [Paper](https://arxiv.org/abs/2305.15798), [GitHub](https://github.com/Nota-NetsPresso/BK-SDM), [Demo]( https://huggingface.co/spaces/nota-ai/compressed-stable-diffusion).
 
75
 
76
  ## Experimental Results
77
 
78
+ The following table shows the zero-shot results on 30K samples from the MS-COCO validation split. After generating 512×512 images with the PNDM scheduler and 25 denoising steps, we downsampled them to 256×256 for evaluating generation scores.
79
+
80
+ - Our models were drawn at the 50K-th training iteration.
81
 
82
  | Model | FID↓ | IS↑ | CLIP Score↑<br>(ViT-g/14) | # Params,<br>U-Net | # Params,<br>Whole SDM |
83
  |:---:|:---:|:---:|:---:|:---:|:---:|
84
  | [Stable Diffusion v1.4](https://huggingface.co/CompVis/stable-diffusion-v1-4) | 13.05 | 36.76 | 0.2958 | 0.86B | 1.04B |
85
+ | [BK-SDM-Base](https://huggingface.co/nota-ai/bk-sdm-base) (Ours) | 15.76 | 33.79 | 0.2878 | 0.58B | 0.76B |
86
+ | [BK-SDM-Base-2M](https://huggingface.co/nota-ai/bk-sdm-base-2m) (Ours) | 14.81 | 34.17 | 0.2883 | 0.58B | 0.76B |
87
  | [BK-SDM-Small](https://huggingface.co/nota-ai/bk-sdm-small) (Ours) | 16.98 | 31.68 | 0.2677 | 0.49B | 0.66B |
88
+ | [BK-SDM-Small-2M](https://huggingface.co/nota-ai/bk-sdm-small-2m) (Ours) | 17.05 | 33.10 | 0.2734 | 0.49B | 0.66B |
89
+ | [BK-SDM-Tiny](https://huggingface.co/nota-ai/bk-sdm-tiny) (Ours) | 17.12 | 30.09 | 0.2653 | 0.33B | 0.50B |
90
+ | [BK-SDM-Tiny-2M](https://huggingface.co/nota-ai/bk-sdm-tiny-2m) (Ours) | 17.53 | 31.32 | 0.2690 | 0.33B | 0.50B |
91
+
92
 
93
 
94
  ### Effect of Different Data Sizes for Training BK-SDM-Small
 
104
  <img alt="Visual results with different data sizes" img src="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/assets-bk-sdm/fig_results_data_size.png" width="100%">
105
  </center>
106
 
107
+ ### Additional Visual Examples
108
+
109
+ <center>
110
+ <img alt="additional visual examples" img src="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/assets-bk-sdm/fig_results_models_2m.png" width="100%">
111
+ </center>
112
+
113
 
114
  # Uses
115
  Follow [the usage guidelines of Stable Diffusion v1](https://huggingface.co/CompVis/stable-diffusion-v1-4#uses).
 
141
  }
142
  ```
143
 
144
+ *This model card was written by Bo-Kyeong Kim and is based on the [Stable Diffusion v1 model card]( https://huggingface.co/CompVis/stable-diffusion-v1-4).*