Delete modeling_mpt.py
Browse files- modeling_mpt.py +0 -833
modeling_mpt.py
DELETED
@@ -1,833 +0,0 @@
|
|
1 |
-
# Adapted from https://github.com/mosaicml/llm-foundry
|
2 |
-
# Classes changed: MPTModel, MPTForCausalLM
|
3 |
-
# SPDX-License-Identifier: Apache-2.0
|
4 |
-
|
5 |
-
"""A simple, flexible implementation of a GPT model.
|
6 |
-
|
7 |
-
Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
|
8 |
-
"""
|
9 |
-
|
10 |
-
import math
|
11 |
-
import warnings
|
12 |
-
from typing import List, Optional, Tuple, Union
|
13 |
-
import torch
|
14 |
-
import torch.nn as nn
|
15 |
-
import torch.nn.functional as F
|
16 |
-
from torch.linalg import vector_norm
|
17 |
-
import faiss
|
18 |
-
from einops import rearrange
|
19 |
-
from composer.utils import dist
|
20 |
-
from omegaconf import DictConfig
|
21 |
-
|
22 |
-
from transformers import (PreTrainedModel, PreTrainedTokenizer,
|
23 |
-
PreTrainedTokenizerFast)
|
24 |
-
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
25 |
-
CausalLMOutputWithPast)
|
26 |
-
from llmfoundry.models.layers.custom_embedding import SharedEmbedding
|
27 |
-
from llmfoundry.models.layers.norm import NORM_CLASS_REGISTRY
|
28 |
-
from llmfoundry.models.utils.param_init_fns import MODEL_INIT_REGISTRY
|
29 |
-
|
30 |
-
from .configuration import ExtendedMPTConfig
|
31 |
-
from .attention import attn_bias_shape, build_attn_bias
|
32 |
-
from .blocks import MPTBlock
|
33 |
-
from .utils import instantiate_from_config
|
34 |
-
|
35 |
-
Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
|
36 |
-
|
37 |
-
class MPTPreTrainedModel(PreTrainedModel):
|
38 |
-
config_class = ExtendedMPTConfig
|
39 |
-
base_model_prefix = 'model'
|
40 |
-
_no_split_modules = ['MPTBlock']
|
41 |
-
|
42 |
-
class ExtendedMPTModel(MPTPreTrainedModel):
|
43 |
-
|
44 |
-
def __init__(self, config: ExtendedMPTConfig):
|
45 |
-
config._validate_config()
|
46 |
-
super().__init__(config)
|
47 |
-
|
48 |
-
self.attn_impl = config.attn_config['attn_impl']
|
49 |
-
self.prefix_lm = config.attn_config['prefix_lm']
|
50 |
-
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
|
51 |
-
self.alibi = config.attn_config['alibi']
|
52 |
-
self.alibi_bias_max = config.attn_config['alibi_bias_max']
|
53 |
-
|
54 |
-
self.mask_by_sim = config.attn_config['mask_by_sim']
|
55 |
-
self.sim_threshold = config.attn_config['sim_threshold']
|
56 |
-
self.topk = config.attn_config['topk']
|
57 |
-
self.use_active_externalism = config.attn_config['use_active_externalism']
|
58 |
-
|
59 |
-
self.use_active_externalism_by_layer = config.use_active_externalism_by_layer
|
60 |
-
|
61 |
-
if config.init_device == 'mixed':
|
62 |
-
if dist.get_local_rank() == 0:
|
63 |
-
config.init_device = 'cpu'
|
64 |
-
else:
|
65 |
-
config.init_device = 'meta'
|
66 |
-
|
67 |
-
if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys():
|
68 |
-
norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys())
|
69 |
-
raise NotImplementedError(
|
70 |
-
f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).'
|
71 |
-
)
|
72 |
-
norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
|
73 |
-
|
74 |
-
# CogView (https://arxiv.org/abs/2105.13290) and GLM-130B (https://arxiv.org/abs/2210.02414)
|
75 |
-
# both report this helping with stabilizing training
|
76 |
-
self.embedding_fraction = config.embedding_fraction
|
77 |
-
|
78 |
-
self.wte = SharedEmbedding(config.vocab_size,
|
79 |
-
config.d_model,
|
80 |
-
device=config.init_device)
|
81 |
-
if not self.alibi:
|
82 |
-
self.wpe = torch.nn.Embedding(config.max_seq_len,
|
83 |
-
config.d_model,
|
84 |
-
device=config.init_device)
|
85 |
-
self.emb_drop = nn.Dropout(config.emb_pdrop)
|
86 |
-
self.blocks = nn.ModuleList([
|
87 |
-
MPTBlock(
|
88 |
-
device=config.init_device,
|
89 |
-
**config.to_dict(),
|
90 |
-
) for _ in range(config.n_layers)
|
91 |
-
])
|
92 |
-
self.norm_f = norm_class(config.d_model, device=config.init_device)
|
93 |
-
|
94 |
-
if config.init_device != 'meta':
|
95 |
-
print(
|
96 |
-
f'You are using {config.init_device=}, but you can also use config.init_device="meta" with Composer + FSDP for fast initialization.'
|
97 |
-
)
|
98 |
-
self.apply(self.param_init_fn)
|
99 |
-
|
100 |
-
self.is_causal = not self.prefix_lm
|
101 |
-
|
102 |
-
# define attn mask
|
103 |
-
self._attn_bias_initialized = False
|
104 |
-
self.attn_bias = None
|
105 |
-
self.attn_bias_shape = attn_bias_shape(
|
106 |
-
self.attn_impl,
|
107 |
-
config.n_heads,
|
108 |
-
config.max_seq_len,
|
109 |
-
self.alibi,
|
110 |
-
prefix_lm=self.prefix_lm,
|
111 |
-
causal=self.is_causal,
|
112 |
-
use_sequence_id=self.attn_uses_sequence_id,
|
113 |
-
)
|
114 |
-
self._attn_bias_ae_initialized = False #for active externalism
|
115 |
-
self.attn_bias_ae = None
|
116 |
-
|
117 |
-
if self.config.no_bias:
|
118 |
-
for module in self.modules():
|
119 |
-
if hasattr(module, 'bias') and isinstance(
|
120 |
-
module.bias, nn.Parameter):
|
121 |
-
if self.config.verbose:
|
122 |
-
warnings.warn(
|
123 |
-
f'Removing bias ({module.bias}) from {module}.')
|
124 |
-
module.register_parameter('bias', None)
|
125 |
-
|
126 |
-
# Print verbose info
|
127 |
-
if config.verbose and config.verbose > 2:
|
128 |
-
print(self)
|
129 |
-
if 'verbose' not in self.config.init_config:
|
130 |
-
self.config.init_config['verbose'] = self.config.verbose
|
131 |
-
if self.config.init_config['verbose'] > 1:
|
132 |
-
init_fn_name = self.config.init_config['name']
|
133 |
-
warnings.warn(f'Using {init_fn_name} initialization.')
|
134 |
-
|
135 |
-
def get_input_embeddings(self):
|
136 |
-
return self.wte
|
137 |
-
|
138 |
-
def set_input_embeddings(self, value: nn.Embedding):
|
139 |
-
self.wte = value
|
140 |
-
|
141 |
-
@torch.no_grad()
|
142 |
-
def _attn_bias(
|
143 |
-
self,
|
144 |
-
device,
|
145 |
-
dtype,
|
146 |
-
attention_mask: Optional[torch.ByteTensor] = None,
|
147 |
-
prefix_mask: Optional[torch.ByteTensor] = None,
|
148 |
-
sequence_id: Optional[torch.LongTensor] = None,
|
149 |
-
seq_len: Optional[int] = None,
|
150 |
-
use_active_externalism:bool=None,
|
151 |
-
topk=None,
|
152 |
-
):
|
153 |
-
if not self._attn_bias_initialized:
|
154 |
-
if self.attn_bias_shape:
|
155 |
-
self.attn_bias = torch.zeros(self.attn_bias_shape,
|
156 |
-
device=device,
|
157 |
-
dtype=dtype)
|
158 |
-
self.attn_bias = build_attn_bias(
|
159 |
-
self.attn_impl,
|
160 |
-
self.config.n_heads,
|
161 |
-
self.config.max_seq_len,
|
162 |
-
device=device,
|
163 |
-
dtype=dtype,
|
164 |
-
attn_bias = self.attn_bias,
|
165 |
-
causal=self.is_causal,
|
166 |
-
alibi=self.alibi,
|
167 |
-
alibi_bias_max=self.alibi_bias_max
|
168 |
-
)
|
169 |
-
self._attn_bias_initialized = True
|
170 |
-
|
171 |
-
if use_active_externalism: #for active externalism, init every time since seq_len changes
|
172 |
-
self.attn_bias_ae = build_attn_bias(
|
173 |
-
self.attn_impl,
|
174 |
-
self.config.n_heads,
|
175 |
-
seq_len,
|
176 |
-
device=device,
|
177 |
-
dtype=dtype,
|
178 |
-
causal=self.is_causal,
|
179 |
-
alibi=self.alibi,
|
180 |
-
alibi_bias_max=self.alibi_bias_max,
|
181 |
-
for_ae=use_active_externalism,
|
182 |
-
topk=topk
|
183 |
-
)
|
184 |
-
|
185 |
-
self._attn_bias_ae_initialized = True
|
186 |
-
|
187 |
-
# flash does not support prefix_lm and will incorporate any
|
188 |
-
# attention_mask inside the attention module
|
189 |
-
if self.attn_impl == 'flash':
|
190 |
-
return self.attn_bias, attention_mask
|
191 |
-
|
192 |
-
if self.attn_bias is not None:
|
193 |
-
# .to(*args, **kwargs) is a no-op if tensor is already on
|
194 |
-
# specified device or of specificed dtype
|
195 |
-
self.attn_bias = self.attn_bias.to(dtype=dtype, device=device)
|
196 |
-
|
197 |
-
attn_bias = self.attn_bias
|
198 |
-
|
199 |
-
if self.attn_bias_ae is not None: #for active externalism
|
200 |
-
self.attn_bias_ae = self.attn_bias_ae.to(dtype=dtype, device=device)
|
201 |
-
attn_bias_ae = self.attn_bias_ae
|
202 |
-
|
203 |
-
# If using torch or triton, we incorporate the prefix_mask (if appropriate)
|
204 |
-
if self.prefix_lm:
|
205 |
-
assert isinstance(attn_bias, torch.Tensor) # pyright
|
206 |
-
assert isinstance(prefix_mask, torch.Tensor) # pyright
|
207 |
-
attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask)
|
208 |
-
|
209 |
-
# If using torch or triton, we incorporate sequence_id (if appropriate)
|
210 |
-
if self.attn_uses_sequence_id and sequence_id is not None:
|
211 |
-
assert isinstance(attn_bias, torch.Tensor) # pyright
|
212 |
-
attn_bias = self._apply_sequence_id(attn_bias, sequence_id)
|
213 |
-
|
214 |
-
# If using torch or triton, we incorporate attention_mask. This will output
|
215 |
-
# None in place of attention_mask since it will not be further needed in the
|
216 |
-
# attention modules.
|
217 |
-
if attention_mask is not None:
|
218 |
-
s_k = attention_mask.shape[-1]
|
219 |
-
if attn_bias is None:
|
220 |
-
attn_bias = torch.zeros((1, 1, 1, s_k),
|
221 |
-
device=device,
|
222 |
-
dtype=dtype)
|
223 |
-
else:
|
224 |
-
# clamp to 0 necessary for torch 2.0 compile()
|
225 |
-
_s_k = max(0, attn_bias.size(-1) - s_k)
|
226 |
-
attn_bias = attn_bias[:, :, :, _s_k:]
|
227 |
-
if prefix_mask is not None and (attention_mask.shape !=
|
228 |
-
prefix_mask.shape):
|
229 |
-
raise ValueError(
|
230 |
-
f'attention_mask shape={attention_mask.shape} ' +
|
231 |
-
f'and prefix_mask shape={prefix_mask.shape} are not equal.')
|
232 |
-
min_val = torch.finfo(attn_bias.dtype).min
|
233 |
-
attn_bias = attn_bias.masked_fill(
|
234 |
-
~attention_mask.view(-1, 1, 1, s_k), min_val)
|
235 |
-
|
236 |
-
return attn_bias, attn_bias_ae, None
|
237 |
-
|
238 |
-
def _apply_prefix_mask(self, attn_bias: torch.Tensor,
|
239 |
-
prefix_mask: torch.Tensor):
|
240 |
-
s_k, s_q = attn_bias.shape[-2:]
|
241 |
-
if (s_k != self.config.max_seq_len) or (s_q != self.config.max_seq_len):
|
242 |
-
raise ValueError(
|
243 |
-
'attn_bias does not match the expected shape. ' +
|
244 |
-
f'The last two dimensions should both be {self.config.max_length} '
|
245 |
-
+ f'but are {s_k} and {s_q}.')
|
246 |
-
seq_len = prefix_mask.shape[-1]
|
247 |
-
if seq_len > self.config.max_seq_len:
|
248 |
-
raise ValueError(
|
249 |
-
f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}'
|
250 |
-
)
|
251 |
-
|
252 |
-
# select seq_len subset of attn mask
|
253 |
-
attn_bias = attn_bias[..., :seq_len, :seq_len]
|
254 |
-
|
255 |
-
# Mix the causal max and the bidirectional mask to get the full
|
256 |
-
# allowable attention (i.e. full = not accounting for padding yet)
|
257 |
-
causal = torch.tril(
|
258 |
-
torch.ones((seq_len, seq_len),
|
259 |
-
dtype=torch.bool,
|
260 |
-
device=prefix_mask.device)).view(1, 1, seq_len, seq_len)
|
261 |
-
prefix = prefix_mask.view(-1, 1, 1, seq_len)
|
262 |
-
cannot_attend = ~torch.logical_or(causal, prefix.bool())
|
263 |
-
|
264 |
-
min_val = torch.finfo(attn_bias.dtype).min
|
265 |
-
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
266 |
-
|
267 |
-
return attn_bias
|
268 |
-
|
269 |
-
def _apply_sequence_id(self, attn_bias: torch.Tensor,
|
270 |
-
sequence_id: torch.LongTensor):
|
271 |
-
seq_len = sequence_id.shape[-1]
|
272 |
-
if seq_len > self.config.max_seq_len:
|
273 |
-
raise ValueError(
|
274 |
-
f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}'
|
275 |
-
)
|
276 |
-
|
277 |
-
# select seq_len subset of attn mask
|
278 |
-
attn_bias = attn_bias[..., :seq_len, :seq_len]
|
279 |
-
|
280 |
-
# Restrict attention to tokens that share the same value
|
281 |
-
# in sequence_id
|
282 |
-
cannot_attend = torch.logical_not(
|
283 |
-
torch.eq(
|
284 |
-
sequence_id.view(-1, seq_len, 1),
|
285 |
-
sequence_id.view(-1, 1, seq_len),
|
286 |
-
)).unsqueeze(1)
|
287 |
-
min_val = torch.finfo(attn_bias.dtype).min
|
288 |
-
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
289 |
-
|
290 |
-
return attn_bias
|
291 |
-
|
292 |
-
def forward(
|
293 |
-
self,
|
294 |
-
input_ids: torch.LongTensor,
|
295 |
-
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
|
296 |
-
attention_mask: Optional[torch.ByteTensor] = None,
|
297 |
-
prefix_mask: Optional[torch.ByteTensor] = None,
|
298 |
-
sequence_id: Optional[torch.LongTensor] = None,
|
299 |
-
return_dict: Optional[bool] = None,
|
300 |
-
output_attentions: Optional[bool] = None,
|
301 |
-
output_hidden_states: Optional[bool] = None,
|
302 |
-
use_cache: Optional[bool] = None,
|
303 |
-
inputs_embeds: Optional[torch.Tensor] = None,
|
304 |
-
use_active_externalism:Optional[bool]=None,
|
305 |
-
long_range_past_key_values:Optional[List[Tuple[torch.FloatTensor]]] = None,
|
306 |
-
faiss_indexes:Tuple=None,
|
307 |
-
topk:int=None,
|
308 |
-
):
|
309 |
-
return_dict = (return_dict
|
310 |
-
if return_dict is not None else self.config.return_dict)
|
311 |
-
use_cache = (use_cache
|
312 |
-
if use_cache is not None else self.config.use_cache)
|
313 |
-
use_active_externalism = (use_active_externalism
|
314 |
-
if use_active_externalism is not None else self.use_active_externalism)
|
315 |
-
topk = (topk if topk is not None else self.topk)
|
316 |
-
|
317 |
-
if attention_mask is not None:
|
318 |
-
attention_mask = attention_mask.bool()
|
319 |
-
|
320 |
-
if prefix_mask is not None:
|
321 |
-
prefix_mask = prefix_mask.bool()
|
322 |
-
|
323 |
-
# These args are passed in by keyword in huggingface's generate function
|
324 |
-
# https://github.com/huggingface/transformers/blob/68287689f2f0d8b7063c400230b3766987abf18d/src/transformers/generation/utils.py#L2201-L2206
|
325 |
-
# but have not yet been fully implemented in MPTModel
|
326 |
-
if not return_dict:
|
327 |
-
raise NotImplementedError(
|
328 |
-
'return_dict False is not implemented yet for MPT')
|
329 |
-
if output_attentions:
|
330 |
-
if self.attn_impl != 'torch':
|
331 |
-
raise NotImplementedError(
|
332 |
-
'output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.'
|
333 |
-
)
|
334 |
-
|
335 |
-
if (attention_mask is not None and
|
336 |
-
attention_mask[:, 0].sum() != attention_mask.shape[0] and
|
337 |
-
self.training):
|
338 |
-
raise NotImplementedError(
|
339 |
-
'MPT does not support training with left padding.')
|
340 |
-
|
341 |
-
if self.prefix_lm and prefix_mask is None:
|
342 |
-
raise ValueError(
|
343 |
-
'prefix_mask is a required argument when MPT is configured with prefix_lm=True.'
|
344 |
-
)
|
345 |
-
|
346 |
-
# Raise a not implemented error if input_embeds is not None (this is an arg in huggingface transformers and we need to support it for PEFT)
|
347 |
-
if inputs_embeds is not None:
|
348 |
-
raise NotImplementedError(
|
349 |
-
'inputs_embeds is not implemented for MPT.')
|
350 |
-
|
351 |
-
if self.training:
|
352 |
-
if self.attn_uses_sequence_id and sequence_id is None:
|
353 |
-
raise ValueError(
|
354 |
-
'sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True '
|
355 |
-
+ 'and the model is in train mode.')
|
356 |
-
elif (self.attn_uses_sequence_id is False) and (sequence_id
|
357 |
-
is not None):
|
358 |
-
warnings.warn(
|
359 |
-
'MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. '
|
360 |
-
+
|
361 |
-
'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.'
|
362 |
-
)
|
363 |
-
|
364 |
-
S = input_ids.size(1)
|
365 |
-
|
366 |
-
assert (
|
367 |
-
S <= self.config.max_seq_len
|
368 |
-
), f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
|
369 |
-
|
370 |
-
tok_emb = self.wte(input_ids) # type: ignore
|
371 |
-
if self.alibi:
|
372 |
-
x = tok_emb
|
373 |
-
else:
|
374 |
-
past_position = 0
|
375 |
-
if past_key_values is not None:
|
376 |
-
if len(past_key_values) != self.config.n_layers:
|
377 |
-
raise ValueError(
|
378 |
-
f'past_key_values must provide a past_key_value for each attention '
|
379 |
-
+
|
380 |
-
f'layer in the network ({len(past_key_values)=}; {self.config.n_layers=}).'
|
381 |
-
)
|
382 |
-
# For attn_impl: triton and flash the past key tensor spec is (batch, seq, dim).
|
383 |
-
# For attn_impl: torch the past key tensor spec is (batch, heads, head_dim, seq).
|
384 |
-
# Here we shift position embedding using the `seq` dim of the past key
|
385 |
-
past_position = past_key_values[0][0].size(1)
|
386 |
-
if self.attn_impl == 'torch':
|
387 |
-
past_position = past_key_values[0][0].size(3)
|
388 |
-
|
389 |
-
if S + past_position > self.config.max_seq_len:
|
390 |
-
raise ValueError(
|
391 |
-
f'Cannot forward input with past sequence length {past_position} and current sequence length '
|
392 |
-
f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.'
|
393 |
-
)
|
394 |
-
pos = torch.arange(
|
395 |
-
past_position,
|
396 |
-
S + past_position,
|
397 |
-
dtype=torch.long,
|
398 |
-
device=input_ids.device,
|
399 |
-
).unsqueeze(0)
|
400 |
-
if attention_mask is not None:
|
401 |
-
# adjust the position indices to account for padding tokens
|
402 |
-
pos = torch.clamp(
|
403 |
-
pos - torch.cumsum((~attention_mask).to(torch.int32),
|
404 |
-
dim=1)[:, past_position:],
|
405 |
-
min=0,
|
406 |
-
)
|
407 |
-
|
408 |
-
pos_emb = self.wpe(pos) # type: ignore
|
409 |
-
x = tok_emb + pos_emb
|
410 |
-
|
411 |
-
if self.embedding_fraction == 1:
|
412 |
-
x = self.emb_drop(x) # type: ignore
|
413 |
-
else:
|
414 |
-
# this implementation is proposed on page 7 of the GLM-130B paper https://arxiv.org/abs/2210.02414
|
415 |
-
x_shrunk = (x * self.embedding_fraction) + (
|
416 |
-
x.detach() * (1 - self.embedding_fraction))
|
417 |
-
assert isinstance(self.emb_drop, nn.Module) # pyright
|
418 |
-
x = self.emb_drop(x_shrunk)
|
419 |
-
|
420 |
-
seq_len = S #for active externalism
|
421 |
-
if past_key_values is not None:
|
422 |
-
past_position = past_key_values[0][0].size(-1)
|
423 |
-
seq_len += past_position
|
424 |
-
|
425 |
-
attn_bias, attn_bias_ae, attention_mask = self._attn_bias(
|
426 |
-
device=x.device,
|
427 |
-
dtype=torch.float32,
|
428 |
-
attention_mask=attention_mask,
|
429 |
-
prefix_mask=prefix_mask,
|
430 |
-
sequence_id=sequence_id,
|
431 |
-
seq_len = seq_len,
|
432 |
-
use_active_externalism=use_active_externalism,
|
433 |
-
topk=topk
|
434 |
-
)
|
435 |
-
|
436 |
-
# initialize the past key values cache if it should be used
|
437 |
-
if use_cache and past_key_values is None:
|
438 |
-
past_key_values = [() for _ in range(self.config.n_layers)
|
439 |
-
] # type: ignore
|
440 |
-
|
441 |
-
all_hidden_states = () if output_hidden_states else None
|
442 |
-
all_self_attns = () if output_attentions else None
|
443 |
-
all_idx = () if output_attentions else None
|
444 |
-
for b_idx, block in enumerate(self.blocks): # type: ignore
|
445 |
-
if output_hidden_states:
|
446 |
-
assert all_hidden_states is not None # pyright
|
447 |
-
all_hidden_states = all_hidden_states + (x,)
|
448 |
-
past_key_value = (past_key_values[b_idx]
|
449 |
-
if past_key_values is not None else None)
|
450 |
-
long_range_past_key_value = (long_range_past_key_values[b_idx]
|
451 |
-
if (long_range_past_key_values is not None and self.use_active_externalism_by_layer[b_idx] and use_active_externalism is True) else None)
|
452 |
-
|
453 |
-
if long_range_past_key_value is not None and faiss_indexes is not None:
|
454 |
-
raise NotImplementedError(
|
455 |
-
'Using faiss and passing key value pairs manually are mutually exclusive right now.')
|
456 |
-
|
457 |
-
x, attn_weights, past_key_value, reshaped_idx = block(
|
458 |
-
x,
|
459 |
-
past_key_value=past_key_value,
|
460 |
-
long_range_past_key_value=long_range_past_key_value,
|
461 |
-
attn_bias=attn_bias,
|
462 |
-
attention_mask=attention_mask,
|
463 |
-
attn_bias_ae=attn_bias_ae,
|
464 |
-
is_causal=self.is_causal,
|
465 |
-
topk=topk,
|
466 |
-
needs_weights=output_attentions,
|
467 |
-
faiss_indexes=faiss_indexes,
|
468 |
-
n_layers=self.config.n_layers,
|
469 |
-
current_layer=b_idx,
|
470 |
-
mask_by_sim=self.mask_by_sim,
|
471 |
-
sim_threshold=self.sim_threshold,
|
472 |
-
)
|
473 |
-
if past_key_values is not None:
|
474 |
-
past_key_values[b_idx] = past_key_value
|
475 |
-
|
476 |
-
if output_attentions:
|
477 |
-
assert all_self_attns is not None # pyright
|
478 |
-
all_self_attns = all_self_attns + (attn_weights,)
|
479 |
-
|
480 |
-
assert all_idx is not None
|
481 |
-
all_idx = all_idx + (reshaped_idx,)
|
482 |
-
|
483 |
-
x = self.norm_f(x) # type: ignore
|
484 |
-
|
485 |
-
# add hidden states from the last decoder layer
|
486 |
-
if output_hidden_states:
|
487 |
-
assert all_hidden_states is not None # pyright
|
488 |
-
all_hidden_states = all_hidden_states + (x,)
|
489 |
-
|
490 |
-
return BaseModelOutputWithPast(
|
491 |
-
last_hidden_state=x,
|
492 |
-
past_key_values=past_key_values,
|
493 |
-
hidden_states=all_hidden_states,
|
494 |
-
attentions=(all_self_attns, all_idx), #return reshaped_idx for active externalism
|
495 |
-
)
|
496 |
-
|
497 |
-
# Param Initialization, needed for device='meta' fast initialization
|
498 |
-
def param_init_fn(self, module):
|
499 |
-
init_fn_name = self.config.init_config['name']
|
500 |
-
MODEL_INIT_REGISTRY[init_fn_name](
|
501 |
-
module=module,
|
502 |
-
n_layers=self.config.n_layers,
|
503 |
-
d_model=self.config.d_model,
|
504 |
-
**self.config.init_config,
|
505 |
-
)
|
506 |
-
|
507 |
-
# FSDP Wrap function
|
508 |
-
def fsdp_wrap_fn(self, module):
|
509 |
-
return isinstance(module, MPTBlock)
|
510 |
-
|
511 |
-
# Activation Checkpointing
|
512 |
-
def activation_checkpointing_fn(self, module):
|
513 |
-
return isinstance(module, MPTBlock)
|
514 |
-
|
515 |
-
class ExtendedMPTForCausalLM(MPTPreTrainedModel):
|
516 |
-
|
517 |
-
def __init__(self, config:ExtendedMPTConfig, external_memories=None):
|
518 |
-
if isinstance(config, DictConfig):
|
519 |
-
config = instantiate_from_config(config)
|
520 |
-
|
521 |
-
super().__init__(config)
|
522 |
-
if not config.tie_word_embeddings:
|
523 |
-
raise ValueError(
|
524 |
-
'MPTForCausalLM only supports tied word embeddings')
|
525 |
-
|
526 |
-
print(f'Instantiating an MPTForCausalLM model from {__file__}')
|
527 |
-
|
528 |
-
self.transformer: ExtendedMPTModel = ExtendedMPTModel(config)
|
529 |
-
|
530 |
-
self.use_active_externalism = config.attn_config['use_active_externalism']
|
531 |
-
self.memory_type = config.attn_config['memory_type']
|
532 |
-
self._memories = None
|
533 |
-
self.memory_device = config.memory_device
|
534 |
-
|
535 |
-
for child in self.transformer.children():
|
536 |
-
if isinstance(child, torch.nn.ModuleList):
|
537 |
-
continue
|
538 |
-
if isinstance(child, torch.nn.Module):
|
539 |
-
child._fsdp_wrap = True
|
540 |
-
|
541 |
-
# enables scaling output logits; similar to a softmax "temperature"
|
542 |
-
# PaLM paper uses scale 1/sqrt(config.d_model)
|
543 |
-
self.logit_scale = None
|
544 |
-
if config.logit_scale is not None:
|
545 |
-
logit_scale = config.logit_scale
|
546 |
-
if isinstance(logit_scale, str):
|
547 |
-
if logit_scale == 'inv_sqrt_d_model':
|
548 |
-
logit_scale = 1 / math.sqrt(config.d_model)
|
549 |
-
else:
|
550 |
-
raise ValueError(
|
551 |
-
f"{logit_scale=} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'."
|
552 |
-
)
|
553 |
-
self.logit_scale = logit_scale
|
554 |
-
|
555 |
-
if external_memories is not None:
|
556 |
-
self._memories = external_memories
|
557 |
-
self.memories = None
|
558 |
-
|
559 |
-
def set_memories(self, memories):
|
560 |
-
self.memories = memories
|
561 |
-
|
562 |
-
def empty_memories(self):
|
563 |
-
self.memories = None
|
564 |
-
|
565 |
-
def get_input_embeddings(self):
|
566 |
-
return self.transformer.wte
|
567 |
-
|
568 |
-
def set_input_embeddings(self, value):
|
569 |
-
self.transformer.wte = value
|
570 |
-
|
571 |
-
def get_output_embeddings(self):
|
572 |
-
return self.transformer.wte
|
573 |
-
|
574 |
-
def set_output_embeddings(self, new_embeddings):
|
575 |
-
self.transformer.wte = new_embeddings
|
576 |
-
|
577 |
-
def set_decoder(self, decoder):
|
578 |
-
self.transformer = decoder
|
579 |
-
|
580 |
-
def get_decoder(self):
|
581 |
-
return self.transformer
|
582 |
-
|
583 |
-
def forward(
|
584 |
-
self,
|
585 |
-
input_ids: torch.LongTensor,
|
586 |
-
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
|
587 |
-
attention_mask: Optional[torch.ByteTensor] = None,
|
588 |
-
prefix_mask: Optional[torch.ByteTensor] = None,
|
589 |
-
sequence_id: Optional[torch.LongTensor] = None,
|
590 |
-
labels: Optional[torch.LongTensor] = None,
|
591 |
-
return_dict: Optional[bool] = None,
|
592 |
-
output_attentions: Optional[bool] = None,
|
593 |
-
output_hidden_states: Optional[bool] = None,
|
594 |
-
use_cache: Optional[bool] = None,
|
595 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
596 |
-
use_active_externalism: Optional[bool]=None,
|
597 |
-
topk:int=None
|
598 |
-
):
|
599 |
-
if self._memories is not None and self.memories is None: #init memories once on first call
|
600 |
-
self.memories = self.generate_cache(self._memories, cache_type=self.memory_type)
|
601 |
-
|
602 |
-
return_dict = (return_dict
|
603 |
-
if return_dict is not None else self.config.return_dict)
|
604 |
-
use_cache = (use_cache
|
605 |
-
if use_cache is not None else self.config.use_cache)
|
606 |
-
use_active_externalism = (use_active_externalism
|
607 |
-
if use_active_externalism is not None else self.use_active_externalism)
|
608 |
-
|
609 |
-
topk = topk if topk is not None else None
|
610 |
-
|
611 |
-
# if input_embeds is not none, raise a not implemented error
|
612 |
-
if inputs_embeds is not None:
|
613 |
-
raise NotImplementedError(
|
614 |
-
'inputs_embeds has to be None (for hf/peft support).')
|
615 |
-
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
616 |
-
|
617 |
-
if hasattr(self, "memories") and type(self.memories)==list:
|
618 |
-
long_range_past_key_values = self.memories
|
619 |
-
faiss_indexes = None
|
620 |
-
elif hasattr(self, "memories"):
|
621 |
-
long_range_past_key_values = None
|
622 |
-
faiss_indexes = self.memories
|
623 |
-
else:
|
624 |
-
long_range_past_key_values = None
|
625 |
-
faiss_indexes = None
|
626 |
-
|
627 |
-
outputs = self.transformer(
|
628 |
-
input_ids=input_ids,
|
629 |
-
past_key_values=past_key_values,
|
630 |
-
long_range_past_key_values=long_range_past_key_values,
|
631 |
-
faiss_indexes=faiss_indexes,
|
632 |
-
attention_mask=attention_mask,
|
633 |
-
prefix_mask=prefix_mask,
|
634 |
-
sequence_id=sequence_id,
|
635 |
-
return_dict=return_dict,
|
636 |
-
output_attentions=output_attentions,
|
637 |
-
output_hidden_states=output_hidden_states,
|
638 |
-
use_cache=use_cache,
|
639 |
-
use_active_externalism=use_active_externalism,
|
640 |
-
topk=topk
|
641 |
-
)
|
642 |
-
|
643 |
-
# move outputs to same device as weights for token embedding
|
644 |
-
# needed to support HF `device_map`
|
645 |
-
logits = self.transformer.wte(
|
646 |
-
outputs.last_hidden_state.to(self.transformer.wte.weight.device),
|
647 |
-
True,
|
648 |
-
)
|
649 |
-
|
650 |
-
if self.logit_scale is not None:
|
651 |
-
if self.logit_scale == 0:
|
652 |
-
warnings.warn(
|
653 |
-
f'Multiplying logits by {self.logit_scale=}. This will produce uniform (uninformative) outputs.'
|
654 |
-
)
|
655 |
-
logits *= self.logit_scale
|
656 |
-
|
657 |
-
loss = None
|
658 |
-
if labels is not None:
|
659 |
-
_labels = torch.roll(labels, shifts=-1)
|
660 |
-
_labels[:, -1] = -100
|
661 |
-
loss = F.cross_entropy(
|
662 |
-
logits.view(-1, logits.size(-1)),
|
663 |
-
_labels.to(logits.device).view(-1),
|
664 |
-
)
|
665 |
-
|
666 |
-
return CausalLMOutputWithPast(
|
667 |
-
loss=loss,
|
668 |
-
logits=logits,
|
669 |
-
past_key_values=outputs.past_key_values,
|
670 |
-
hidden_states=outputs.hidden_states,
|
671 |
-
attentions=outputs.attentions,
|
672 |
-
)
|
673 |
-
|
674 |
-
# Param Initialization, needed for device='meta' fast initialization
|
675 |
-
def param_init_fn(self, module):
|
676 |
-
init_fn_name = self.config.init_config['name']
|
677 |
-
MODEL_INIT_REGISTRY[init_fn_name](
|
678 |
-
module=module,
|
679 |
-
n_layers=self.config.n_layers,
|
680 |
-
d_model=self.config.d_model,
|
681 |
-
**self.config.init_config,
|
682 |
-
)
|
683 |
-
|
684 |
-
# FSDP Wrap function
|
685 |
-
def fsdp_wrap_fn(self, module):
|
686 |
-
return isinstance(module, MPTBlock)
|
687 |
-
|
688 |
-
# Activation Checkpointing
|
689 |
-
def activation_checkpointing_fn(self, module):
|
690 |
-
return isinstance(module, MPTBlock)
|
691 |
-
|
692 |
-
def generate_cache(self,
|
693 |
-
input_ids:torch.LongTensor,
|
694 |
-
stride:int=512,
|
695 |
-
max_len:int=2048,
|
696 |
-
cache_type:str='manual'):
|
697 |
-
if cache_type not in ['manual', 'faiss']:
|
698 |
-
raise NotImplementedError(f"Cache type {cache_type} not implemented.")
|
699 |
-
|
700 |
-
prev_end_loc=0
|
701 |
-
long_range_past_key_values = None
|
702 |
-
faiss_indexes= None
|
703 |
-
for b_idx in range(0, input_ids.size(-1), stride): #generate kv-pairs using stride
|
704 |
-
end_loc = min(b_idx + max_len, input_ids.size(-1))
|
705 |
-
trg_len = end_loc - prev_end_loc
|
706 |
-
subseq = input_ids[:, b_idx:end_loc].to(self.device)
|
707 |
-
with torch.no_grad():
|
708 |
-
outputs = self.transformer(subseq, use_cache=True, use_active_externalism=False)
|
709 |
-
to_cache = [(
|
710 |
-
kv[0][:,:,:,-trg_len:],
|
711 |
-
kv[1][:,:,-trg_len:])
|
712 |
-
for kv in outputs.past_key_values
|
713 |
-
]
|
714 |
-
long_range_past_key_values, faiss_indexes = self.cache(to_cache, cache_type, long_range_past_key_values=long_range_past_key_values, faiss_indexes=faiss_indexes)
|
715 |
-
|
716 |
-
prev_end_loc = end_loc
|
717 |
-
if end_loc == input_ids.size(-1):
|
718 |
-
break
|
719 |
-
if long_range_past_key_values is not None:
|
720 |
-
return long_range_past_key_values
|
721 |
-
else:
|
722 |
-
return faiss_indexes
|
723 |
-
|
724 |
-
def cache(self,
|
725 |
-
to_cache:List,
|
726 |
-
cache_type:str='manual',
|
727 |
-
long_range_past_key_values:List=None,
|
728 |
-
faiss_indexes:faiss.IndexFlatIP=None,
|
729 |
-
max_length_cache=100000,
|
730 |
-
verbose=False):
|
731 |
-
if long_range_past_key_values is not None and faiss_indexes is not None:
|
732 |
-
raise NotImplementedError("Using faiss and passing key value pairs manually are mutually exclusive right now.")
|
733 |
-
|
734 |
-
if cache_type=='faiss': #add one-hot encoding to match layer, head indices
|
735 |
-
one_hot_encodings = F.one_hot(torch.arange(0, self.config.n_heads*self.config.n_layers))*10
|
736 |
-
if faiss_indexes is None:
|
737 |
-
faiss_indexes = (faiss.IndexFlatIP(to_cache[0][0].size(-2)+one_hot_encodings.size(-1)), faiss.IndexFlatIP(to_cache[0][1].size(-1)*2))
|
738 |
-
kn_index, kv_index = faiss_indexes
|
739 |
-
for b_idx, (k, v) in enumerate(to_cache):
|
740 |
-
k_n = (k/vector_norm(k, ord=2, dim=-2, keepdim=True)).to('cpu')
|
741 |
-
k_n = torch.concat([rearrange(k_n, 'b h d s -> b (h s) d', h=self.config.n_heads), one_hot_encodings[self.config.n_heads*b_idx:self.config.n_heads*(b_idx+1)].unsqueeze(0).repeat_interleave(repeats=k.size(-1), dim=-2)], dim=-1)
|
742 |
-
kn_index.add(k_n.squeeze().numpy())
|
743 |
-
|
744 |
-
k= rearrange(k, 'b h d s -> b (h s) d', h=self.config.n_heads)
|
745 |
-
v= rearrange(v, 'b h s d -> b (h s) d', h=self.config.n_heads)
|
746 |
-
kv_index.add(torch.concat([v.squeeze(), k.squeeze()], dim=1).to('cpu').numpy())
|
747 |
-
else:
|
748 |
-
if long_range_past_key_values is None:
|
749 |
-
long_range_past_key_values = [(k.to(self.memory_device),v.to(self.memory_device)) for k,v in to_cache]
|
750 |
-
else:
|
751 |
-
long_range_past_key_values = [
|
752 |
-
(
|
753 |
-
torch.concat([kv[0], to_cache[ind][0].to(self.memory_device)], dim=3),
|
754 |
-
torch.concat([kv[1], to_cache[ind][1].to(self.memory_device)], dim=2)
|
755 |
-
)
|
756 |
-
for ind, kv in enumerate(long_range_past_key_values)
|
757 |
-
]
|
758 |
-
if long_range_past_key_values is not None: #set a limit on manual memory length
|
759 |
-
if long_range_past_key_values[0][0].size(-1) > max_length_cache:
|
760 |
-
long_range_past_key_values = [
|
761 |
-
(
|
762 |
-
kv[0][:, :, :, -max_length_cache:],
|
763 |
-
kv[1][:, :, -max_length_cache:]
|
764 |
-
)
|
765 |
-
for kv in long_range_past_key_values]
|
766 |
-
if verbose:
|
767 |
-
if cache_type == 'faiss':
|
768 |
-
print(f"{kn_index.ntotal} keys in faiss index")
|
769 |
-
else:
|
770 |
-
print(f"{long_range_past_key_values[0][0].size(-1)} cached kvs")
|
771 |
-
|
772 |
-
return long_range_past_key_values, (kn_index, kv_index) if cache_type == 'faiss' else None
|
773 |
-
|
774 |
-
def prepare_inputs_for_generation(
|
775 |
-
self,
|
776 |
-
input_ids,
|
777 |
-
past_key_values=None,
|
778 |
-
inputs_embeds=None,
|
779 |
-
**kwargs,
|
780 |
-
):
|
781 |
-
if inputs_embeds is not None:
|
782 |
-
raise NotImplementedError(
|
783 |
-
'inputs_embeds is not implemented for MPT yet')
|
784 |
-
|
785 |
-
attention_mask = kwargs['attention_mask'].bool()
|
786 |
-
if attention_mask[:, -1].sum() != attention_mask.shape[0]:
|
787 |
-
raise NotImplementedError(
|
788 |
-
'MPT does not support generation with right padding.')
|
789 |
-
|
790 |
-
if self.transformer.attn_uses_sequence_id and self.training:
|
791 |
-
sequence_id = torch.zeros_like(input_ids[:1])
|
792 |
-
else:
|
793 |
-
sequence_id = None
|
794 |
-
|
795 |
-
if past_key_values is not None:
|
796 |
-
input_ids = input_ids[:, -1].unsqueeze(-1)
|
797 |
-
|
798 |
-
if self.transformer.prefix_lm:
|
799 |
-
# Leverage a convenience of sequential generation!
|
800 |
-
prefix_mask = torch.ones_like(attention_mask)
|
801 |
-
# This requires that we're using the cache
|
802 |
-
if kwargs.get('use_cache') == False:
|
803 |
-
raise NotImplementedError(
|
804 |
-
'MPT with prefix_lm=True does not support use_cache=False.')
|
805 |
-
else:
|
806 |
-
prefix_mask = None
|
807 |
-
|
808 |
-
return {
|
809 |
-
'input_ids': input_ids,
|
810 |
-
'attention_mask': attention_mask,
|
811 |
-
'prefix_mask': prefix_mask,
|
812 |
-
'sequence_id': sequence_id,
|
813 |
-
'past_key_values': past_key_values,
|
814 |
-
'use_cache': kwargs.get('use_cache', True),
|
815 |
-
'use_active_externalism': kwargs.get('use_active_externalism'), #add a few more kwargs for active externalism
|
816 |
-
'topk': kwargs.get('topk', None),
|
817 |
-
}
|
818 |
-
|
819 |
-
@staticmethod
|
820 |
-
def _reorder_cache(past_key_values, beam_idx):
|
821 |
-
"""Used by HuggingFace generate when using beam search with kv-caching.
|
822 |
-
|
823 |
-
See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
|
824 |
-
for an example in transformers.
|
825 |
-
"""
|
826 |
-
reordered_past = []
|
827 |
-
for layer_past in past_key_values:
|
828 |
-
reordered_past += [
|
829 |
-
tuple(
|
830 |
-
past_state.index_select(0, beam_idx)
|
831 |
-
for past_state in layer_past)
|
832 |
-
]
|
833 |
-
return reordered_past
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|