--- library_name: peft language: - ko license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer model-index: - name: Whisper Turbo ko results: [] --- # Whisper Turbo ko This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co./openai/whisper-large-v3-turbo) on the custom dataset. It achieves the following results on the evaluation set: - Loss: 0.0940 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 64 - eval_batch_size: 256 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.3061 | 0.5405 | 100 | 0.6169 | | 0.107 | 1.0811 | 200 | 0.3840 | | 0.0871 | 1.6216 | 300 | 0.3024 | | 0.0801 | 2.1622 | 400 | 0.2429 | | 0.0608 | 2.7027 | 500 | 0.2094 | | 0.0527 | 3.2432 | 600 | 0.1674 | | 0.0377 | 3.7838 | 700 | 0.1404 | | 0.0316 | 4.3243 | 800 | 0.1230 | | 0.0302 | 4.8649 | 900 | 0.1004 | | 0.0227 | 5.4054 | 1000 | 0.0940 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0