--- library_name: transformers language: - en pipeline_tag: image-feature-extraction license: cc-by-nc-4.0 inference: false --- # nomic-embed-vision-v1.5: Expanding the Latent Space `nomic-embed-vision-v1.5` is a high performing vision embedding model that shares the same embedding space as [nomic-embed-text-v1.5](https://huggingface.co./nomic-ai/nomic-embed-text-v1.5). All Nomic Embed Text models are now **multimodal**! | Name | Imagenet 0-shot | Datacomp (Avg. 38) | MTEB | | :-------------------------------:| :-------------- | :----------------- | :------: | | `nomic-embed-vision-v1.5` | **71.0** | **56.8** | 62.28 | | `nomic-embed-vision-v1` | 70.7 | 56.7 | **62.39** | | OpenAI CLIP ViT B/16 | 68.3 | 56.3 | 43.82 | | Jina CLIP v1 | 59.1 | 52.2 | 60.1 | ## Hosted Inference API The easiest way to get started with Nomic Embed is through the Nomic Embedding API. Generating embeddings with the `nomic` Python client is as easy as ```python from nomic import embed import numpy as np output = embed.image( images=[ "image_path_1.jpeg", "image_path_2.png", ], model='nomic-embed-vision-v1.5', ) print(output['usage']) embeddings = np.array(output['embeddings']) print(embeddings.shape) ``` For more information, see the [API reference](https://docs.nomic.ai/reference/endpoints/nomic-embed-vision) ## Data Visualization Click the Nomic Atlas map below to visualize a 100,000 sample CC3M comparing the Vision and Text Embedding Space! [![image/webp](https://cdn-uploads.huggingface.co/production/uploads/607997c83a565c15675055b3/aKJogjDQ4BBiYGRIIrFMa.webp)](https://atlas.nomic.ai/data/nomic-multimodal-series/cc3m-100k-image-bytes-v15/map) ## Training Details We align our vision embedder to the text embedding by employing a technique similar to [LiT](https://arxiv.org/abs/2111.07991) but instead lock the text embedder! For more details, see the Nomic Embed Vision Technical Report (soon to be released!) and corresponding [blog post](https://blog.nomic.ai/posts/nomic-embed-vision) Training code is released in the `contrastors` [repository](https://github.com/nomic-ai/contrastors) ## Usage Remember `nomic-embed-text` *requires* prefixes and so, when using Nomic Embed in multimodal RAG scenarios (e.g. text to image retrieval), you should use the `search_query: ` prefix. ### Transformers ```python import torch import torch.nn.functional as F from transformers import AutoTokenizer, AutoModel, AutoImageProcessor from PIL import Image import requests processor = AutoImageProcessor.from_pretrained("nomic-ai/nomic-embed-vision-v1.5") vision_model = AutoModel.from_pretrained("nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True) url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) inputs = processor(image, return_tensors="pt") img_emb = vision_model(**inputs).last_hidden_state img_embeddings = F.normalize(img_emb[:, 0], p=2, dim=1) ``` Additionally, you can perform multimodal retrieval! ```python def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) sentences = ['search_query: What are cute animals to cuddle with?', 'search_query: What do cats look like?'] tokenizer = AutoTokenizer.from_pretrained('nomic-ai/nomic-embed-text-v1.5') text_model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1.5', trust_remote_code=True) text_model.eval() encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') with torch.no_grad(): model_output = text_model(**encoded_input) text_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) text_embeddings = F.layer_norm(text_embeddings, normalized_shape=(text_embeddings.shape[1],)) text_embeddings = F.normalize(text_embeddings, p=2, dim=1) print(torch.matmul(img_embeddings, text_embeddings.T)) ``` # Join the Nomic Community - Nomic: [https://nomic.ai](https://nomic.ai) - Discord: [https://discord.gg/myY5YDR8z8](https://discord.gg/myY5YDR8z8) - Twitter: [https://twitter.com/nomic_ai](https://twitter.com/nomic_ai)