zpn commited on
Commit
fdc231d
·
verified ·
1 Parent(s): 5919d1f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -1
README.md CHANGED
@@ -2660,6 +2660,9 @@ Training data to train the models is released in its entirety. For more details,
2660
 
2661
  ## Usage
2662
 
 
 
 
2663
 
2664
  ```python
2665
  import torch
@@ -2671,7 +2674,7 @@ def mean_pooling(model_output, attention_mask):
2671
  input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
2672
  return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
2673
 
2674
- sentences = ['What is TSNE?', 'Who is Laurens van der Maaten?']
2675
 
2676
  tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
2677
  model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1-unsupervised', trust_remote_code=True)
 
2660
 
2661
  ## Usage
2662
 
2663
+ Note `nomic-embed-text` requires prefixes! We support the prefixes `[search_query, search_document, classification, clustering]`.
2664
+ For retrieval applications, you should prepend `search_document` for all your documents and `search_query` for your queries.
2665
+
2666
 
2667
  ```python
2668
  import torch
 
2674
  input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
2675
  return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
2676
 
2677
+ sentences = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?']
2678
 
2679
  tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
2680
  model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1-unsupervised', trust_remote_code=True)