remove main model info
Browse files
README.md
CHANGED
@@ -2604,110 +2604,10 @@ model-index:
|
|
2604 |
|
2605 |
# nomic-embed-text-v1-ablated: A Reproducible Long Context (8192) Text Embedder
|
2606 |
|
2607 |
-
`nomic-embed-text-v1-ablated` is 8192 context length text encoder
|
2608 |
-
.
|
2609 |
|
|
|
2610 |
|
2611 |
-
| Name | SeqLen | MTEB | LoCo | Jina Long Context | Open Weights | Open Training Code | Open Data |
|
2612 |
-
| :-------------------------------:| :----- | :-------- | :------: | :---------------: | :-----------: | :----------------: | :---------- |
|
2613 |
-
| nomic-embed-text-v1 | 8192 | **62.39** |**85.53** | 54.16 | ✅ | ✅ | ✅ |
|
2614 |
-
| jina-embeddings-v2-base-en | 8192 | 60.39 | 85.45 | 51.90 | ✅ | ❌ | ❌ |
|
2615 |
-
| text-embedding-3-small | 8191 | 62.26 | 82.40 | **58.20** | ❌ | ❌ | ❌ |
|
2616 |
-
| text-embedding-ada-002 | 8191 | 60.99 | 52.7 | 55.25 | ❌ | ❌ | ❌ |
|
2617 |
-
|
2618 |
-
|
2619 |
-
If you would like to finetune a model on more data, you can use this model as an initialization
|
2620 |
-
|
2621 |
-
## Hosted Inference API
|
2622 |
-
|
2623 |
-
The easiest way to get started with Nomic Embed is through the Nomic Embedding API.
|
2624 |
-
|
2625 |
-
Generating embeddings with the `nomic` Python client is as easy as
|
2626 |
-
|
2627 |
-
```python
|
2628 |
-
from nomic import embed
|
2629 |
-
|
2630 |
-
output = embed.text(
|
2631 |
-
texts=['Nomic Embedding API', '#keepAIOpen'],
|
2632 |
-
model='nomic-embed-text-v1',
|
2633 |
-
task_type='search_document'
|
2634 |
-
)
|
2635 |
-
|
2636 |
-
print(output)
|
2637 |
-
```
|
2638 |
-
|
2639 |
-
For more information, see the [API reference](https://docs.nomic.ai/reference/endpoints/nomic-embed-text)
|
2640 |
-
|
2641 |
-
## Data Visualization
|
2642 |
-
Click the Nomic Atlas map below to visualize a 5M sample of our contrastive pretraining data!
|
2643 |
-
|
2644 |
-
|
2645 |
-
[![image/webp](https://cdn-uploads.huggingface.co/production/uploads/607997c83a565c15675055b3/pjhJhuNyRfPagRd_c_iUz.webp)](https://atlas.nomic.ai/map/nomic-text-embed-v1-5m-sample)
|
2646 |
-
|
2647 |
-
## Training Details
|
2648 |
-
|
2649 |
-
We train our embedder using a multi-stage training pipeline. Starting from a long-context [BERT model](https://huggingface.co/nomic-ai/nomic-bert-2048),
|
2650 |
-
the first unsupervised contrastive stage trains on a dataset generated from weakly related text pairs, such as question-answer pairs from forums like StackExchange and Quora, title-body pairs from Amazon reviews, and summarizations from news articles.
|
2651 |
-
|
2652 |
-
In the second finetuning stage, higher quality labeled datasets such as search queries and answers from web searches are leveraged. Data curation and hard-example mining is crucial in this stage.
|
2653 |
-
|
2654 |
-
For more details, see the Nomic Embed [Technical Report](https://static.nomic.ai/reports/2024_Nomic_Embed_Text_Technical_Report.pdf) and corresponding [blog post](https://blog.nomic.ai/posts/nomic-embed-text-v1).
|
2655 |
-
|
2656 |
-
Training data to train the models is released in its entirety. For more details, see the `contrastors` [repository](https://github.com/nomic-ai/contrastors)
|
2657 |
-
|
2658 |
-
## Usage
|
2659 |
-
|
2660 |
-
Note `nomic-embed-text` requires prefixes! We support the prefixes `[search_query, search_document, classification, clustering]`.
|
2661 |
-
For retrieval applications, you should prepend `search_document` for all your documents and `search_query` for your queries.
|
2662 |
-
|
2663 |
-
### Sentence Transformers
|
2664 |
-
```python
|
2665 |
-
from sentence_transformers import SentenceTransformer
|
2666 |
-
|
2667 |
-
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1-ablated", trust_remote_code=True)
|
2668 |
-
sentences = ['search_query: What is TSNE?', 'search_query Who is Laurens van der Maaten?']
|
2669 |
-
embeddings = model.encode(sentences)
|
2670 |
-
print(embeddings)
|
2671 |
-
```
|
2672 |
-
|
2673 |
-
### Transformers
|
2674 |
-
|
2675 |
-
```python
|
2676 |
-
import torch
|
2677 |
-
import torch.nn.functional as F
|
2678 |
-
from transformers import AutoTokenizer, AutoModel
|
2679 |
-
|
2680 |
-
def mean_pooling(model_output, attention_mask):
|
2681 |
-
token_embeddings = model_output[0]
|
2682 |
-
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
2683 |
-
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
2684 |
-
|
2685 |
-
sentences = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?']
|
2686 |
-
|
2687 |
-
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
2688 |
-
model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1-ablated', trust_remote_code=True)
|
2689 |
-
model.eval()
|
2690 |
-
|
2691 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
2692 |
-
|
2693 |
-
with torch.no_grad():
|
2694 |
-
model_output = model(**encoded_input)
|
2695 |
-
|
2696 |
-
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
2697 |
-
embeddings = F.normalize(embeddings, p=2, dim=1)
|
2698 |
-
print(embeddings)
|
2699 |
-
```
|
2700 |
-
|
2701 |
-
The model natively supports scaling of the sequence length past 2048 tokens. To do so,
|
2702 |
-
|
2703 |
-
```diff
|
2704 |
-
- tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
2705 |
-
+ tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased', model_max_length=8192)
|
2706 |
-
|
2707 |
-
|
2708 |
-
- model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1-ablated', trust_remote_code=True)
|
2709 |
-
+ model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1-ablated', trust_remote_code=True, rotary_scaling_factor=2)
|
2710 |
-
```
|
2711 |
|
2712 |
# Join the Nomic Community
|
2713 |
|
|
|
2604 |
|
2605 |
# nomic-embed-text-v1-ablated: A Reproducible Long Context (8192) Text Embedder
|
2606 |
|
2607 |
+
`nomic-embed-text-v1-ablated` is 8192 context length text encoder. This is a checkpoint trained after modifying the training dataset to be different from the dataset used to train our [final model](https://huggingface.co/nomic-ai/nomic-embed-text-v1). The purpose of releasing this checkpoint is to understand the impact that subsets of our training data had on model outcomes. This release is part of our commitment to open-source training artifacts from our Nomic Embed Text tech report [here](https://arxiv.org/pdf/2402.01613)
|
|
|
2608 |
|
2609 |
+
If you want to use a model to extract embeddings, we suggest using [nomic-embed-text-v1](https://huggingface.co/nomic-ai/nomic-embed-text-v1).
|
2610 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2611 |
|
2612 |
# Join the Nomic Community
|
2613 |
|