Add new SentenceTransformer model
Browse filesHello!
*This pull request has been automatically generated from the [`push_to_hub`](https://sbert.net/docs/package_reference/sentence_transformer/SentenceTransformer.html#sentence_transformers.SentenceTransformer.push_to_hub) method from the Sentence Transformers library.*
## Full Model Architecture:
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Tip:
Consider testing this pull request before merging by loading the model from this PR with the `revision` argument:
```python
from sentence_transformers import SentenceTransformer
# TODO: Fill in the PR number
pr_number = 2
model = SentenceTransformer(
"nomic-ai/modernbert-embed",
revision=f"refs/pr/{pr_number}",
backend="torch",
)
# Verify that everything works as expected
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities)
```
- 1_Pooling/config.json +10 -0
- README.md +0 -0
- config.json +1 -1
- config_sentence_transformers.json +10 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- tokenizer_config.json +1 -1
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
The diff for this file is too large to render.
See raw diff
|
|
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "nomic-ai/
|
3 |
"architectures": [
|
4 |
"ModernBertModel"
|
5 |
],
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "nomic-ai/modernbert-embed",
|
3 |
"architectures": [
|
4 |
"ModernBertModel"
|
5 |
],
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.48.0.dev0",
|
5 |
+
"pytorch": "2.4.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
@@ -937,7 +937,7 @@
|
|
937 |
"input_ids",
|
938 |
"attention_mask"
|
939 |
],
|
940 |
-
"model_max_length":
|
941 |
"pad_token": "[PAD]",
|
942 |
"sep_token": "[SEP]",
|
943 |
"tokenizer_class": "PreTrainedTokenizerFast",
|
|
|
937 |
"input_ids",
|
938 |
"attention_mask"
|
939 |
],
|
940 |
+
"model_max_length": 8192,
|
941 |
"pad_token": "[PAD]",
|
942 |
"sep_token": "[SEP]",
|
943 |
"tokenizer_class": "PreTrainedTokenizerFast",
|