--- license: llama2 library_name: peft tags: - axolotl - dpo - trl - generated_from_trainer base_model: codellama/CodeLlama-7b-hf model-index: - name: modeltest1-dpo results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: codellama/CodeLlama-7b-hf model_type: LlamaForCausalLM tokenizer_type: CodeLlamaTokenizer is_llama_derived_model: true hub_model_id: noeloco/modeltest1-dpo load_in_8bit: false load_in_4bit: true strict: false datasets: - path: noeloco/fizzbuzz-sft type: alpaca ds_type: json hf_use_auth_token: true push_dataset_to_hub: noeloco val_set_size: 0.05 output_dir: ./lora-out chat_template: chatml rl: dpo datasets: - path: noeloco/fizzbuzz-dpo split: train data_files: - /tmp/fizzbuzz-ft/datasets/training-set-dpo.json #type: # field_prompt: question # field_chosen: chosen # field_rejected: rejected ds_type: json #type: intel_apply_chatml type: chatml.intel hf_use_auth_token: true push_dataset_to_hub: noeloco val_set_size: 0.05 output_dir: ./lora-out chat_template: chatml sequence_len: 2048 sample_packing: false pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 16 lora_alpha: 8 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: runpod1 wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 2 num_epochs: 3 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 1 debug: true deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# modeltest1-dpo This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co./codellama/CodeLlama-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 222 ### Training results ### Framework versions - PEFT 0.10.1.dev0 - Transformers 4.40.0.dev0 - Pytorch 2.1.2+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0