File size: 2,788 Bytes
fb38c45
cbebdef
640fa30
fb38c45
 
 
 
 
 
 
 
 
 
 
 
640fa30
fb38c45
0b1a5ef
 
 
fb38c45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbebdef
 
0ee5134
cf15ec1
3c806e6
992bd9d
145527b
acddb20
0281873
cad75d2
09c6adf
67552e3
fa342ee
bb9a053
eee840c
df4e942
b56cfa5
69bbad4
a14148f
f5b5317
53b6388
850bffa
9205d7c
f19bed2
c996e39
568bbf5
d65869d
089bebb
a3635bb
38cb5a2
5cef6c7
009f320
a6f1c9e
4d9c48b
ce862dc
ec9b1dd
43cf497
0b1a5ef
fb38c45
 
 
 
5b10cc5
 
 
fb38c45
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: node-py/my_awesome_eli5_clm-model
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# node-py/my_awesome_eli5_clm-model

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.2501
- Validation Loss: 4.2690
- Epoch: 35

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 7.3929     | 6.0819          | 0     |
| 5.9912     | 5.8303          | 1     |
| 5.7553     | 5.5854          | 2     |
| 5.5082     | 5.3645          | 3     |
| 5.2836     | 5.1815          | 4     |
| 5.0867     | 5.0252          | 5     |
| 4.9075     | 4.8834          | 6     |
| 4.7424     | 4.7747          | 7     |
| 4.5947     | 4.6684          | 8     |
| 4.4570     | 4.5836          | 9     |
| 4.3290     | 4.5194          | 10    |
| 4.2123     | 4.4408          | 11    |
| 4.1037     | 4.3965          | 12    |
| 3.9979     | 4.3630          | 13    |
| 3.8983     | 4.3101          | 14    |
| 3.8011     | 4.2792          | 15    |
| 3.7097     | 4.2592          | 16    |
| 3.6182     | 4.2285          | 17    |
| 3.5337     | 4.2061          | 18    |
| 3.4483     | 4.1943          | 19    |
| 3.3589     | 4.1787          | 20    |
| 3.2776     | 4.1684          | 21    |
| 3.1959     | 4.1764          | 22    |
| 3.1161     | 4.1673          | 23    |
| 3.0389     | 4.1643          | 24    |
| 2.9631     | 4.1647          | 25    |
| 2.8859     | 4.1639          | 26    |
| 2.8110     | 4.1737          | 27    |
| 2.7362     | 4.1677          | 28    |
| 2.6631     | 4.1952          | 29    |
| 2.5915     | 4.2045          | 30    |
| 2.5227     | 4.1999          | 31    |
| 2.4573     | 4.2159          | 32    |
| 2.3862     | 4.2372          | 33    |
| 2.3205     | 4.2358          | 34    |
| 2.2501     | 4.2690          | 35    |


### Framework versions

- Transformers 4.44.0
- TensorFlow 2.16.1
- Datasets 2.21.0
- Tokenizers 0.19.1