File size: 1,851 Bytes
fb38c45 fecd799 fb38c45 c326355 19154e9 05570df 5c76c53 9264567 0dbb7ef bef7118 9ead14a d992c9e a0f6f37 300a9b1 6466a56 6fbd563 88bee79 37ea056 60fad6e fecd799 fb38c45 c326355 fb38c45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
base_model: bert-base-chinese
tags:
- generated_from_keras_callback
model-index:
- name: node-py/my_awesome_eli5_clm-model
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# node-py/my_awesome_eli5_clm-model
This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co./bert-base-chinese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.2792
- Epoch: 26
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Epoch |
|:----------:|:-----:|
| 6.5795 | 0 |
| 5.8251 | 1 |
| 5.3850 | 2 |
| 5.0469 | 3 |
| 4.8048 | 4 |
| 4.6144 | 5 |
| 4.4743 | 6 |
| 4.3366 | 7 |
| 4.2178 | 8 |
| 4.1022 | 9 |
| 3.9908 | 10 |
| 3.8856 | 11 |
| 3.7700 | 12 |
| 3.6673 | 13 |
| 3.5560 | 14 |
| 3.4401 | 15 |
| 3.3328 | 16 |
| 3.2248 | 17 |
| 3.1290 | 18 |
| 3.0121 | 19 |
| 2.8978 | 20 |
| 2.7830 | 21 |
| 2.6913 | 22 |
| 2.5822 | 23 |
| 2.4772 | 24 |
| 2.3761 | 25 |
| 2.2792 | 26 |
### Framework versions
- Transformers 4.44.0
- TensorFlow 2.16.1
- Datasets 2.21.0
- Tokenizers 0.19.1
|