File size: 1,763 Bytes
fb38c45
cbebdef
640fa30
fb38c45
 
 
 
 
 
 
 
 
 
 
 
640fa30
fb38c45
fa342ee
 
 
fb38c45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbebdef
 
0ee5134
cf15ec1
3c806e6
992bd9d
145527b
acddb20
0281873
cad75d2
09c6adf
67552e3
fa342ee
fb38c45
 
 
 
5b10cc5
 
 
fb38c45
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: node-py/my_awesome_eli5_clm-model
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# node-py/my_awesome_eli5_clm-model

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 4.3290
- Validation Loss: 4.5194
- Epoch: 10

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 7.3929     | 6.0819          | 0     |
| 5.9912     | 5.8303          | 1     |
| 5.7553     | 5.5854          | 2     |
| 5.5082     | 5.3645          | 3     |
| 5.2836     | 5.1815          | 4     |
| 5.0867     | 5.0252          | 5     |
| 4.9075     | 4.8834          | 6     |
| 4.7424     | 4.7747          | 7     |
| 4.5947     | 4.6684          | 8     |
| 4.4570     | 4.5836          | 9     |
| 4.3290     | 4.5194          | 10    |


### Framework versions

- Transformers 4.44.0
- TensorFlow 2.16.1
- Datasets 2.21.0
- Tokenizers 0.19.1