File size: 1,621 Bytes
fb38c45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0f6f37
 
fb38c45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c326355
19154e9
 
05570df
5c76c53
 
9264567
 
0dbb7ef
 
bef7118
 
9ead14a
 
d992c9e
a0f6f37
 
fb38c45
 
 
 
c326355
 
fb38c45
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
base_model: bert-base-chinese
tags:
- generated_from_keras_callback
model-index:
- name: node-py/my_awesome_eli5_clm-model
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# node-py/my_awesome_eli5_clm-model

This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co./bert-base-chinese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 3.3328
- Epoch: 16

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Epoch |
|:----------:|:-----:|
| 6.5795     | 0     |
| 5.8251     | 1     |
| 5.3850     | 2     |
| 5.0469     | 3     |
| 4.8048     | 4     |
| 4.6144     | 5     |
| 4.4743     | 6     |
| 4.3366     | 7     |
| 4.2178     | 8     |
| 4.1022     | 9     |
| 3.9908     | 10    |
| 3.8856     | 11    |
| 3.7700     | 12    |
| 3.6673     | 13    |
| 3.5560     | 14    |
| 3.4401     | 15    |
| 3.3328     | 16    |


### Framework versions

- Transformers 4.44.0
- TensorFlow 2.16.1
- Datasets 2.21.0
- Tokenizers 0.19.1