File size: 2,357 Bytes
fb38c45 65d8e26 fb38c45 c326355 19154e9 05570df 5c76c53 9264567 0dbb7ef bef7118 9ead14a d992c9e a0f6f37 300a9b1 6466a56 6fbd563 88bee79 37ea056 60fad6e fecd799 73629f7 5b57d3c 8cc02c7 709cb46 20c8ea0 974529d 7eb4081 3ccda5a c6e52fc 16dfdba 3f5430b 65d8e26 fb38c45 c326355 fb38c45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
---
base_model: bert-base-chinese
tags:
- generated_from_keras_callback
model-index:
- name: node-py/my_awesome_eli5_clm-model
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# node-py/my_awesome_eli5_clm-model
This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co./bert-base-chinese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.7162
- Epoch: 48
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Epoch |
|:----------:|:-----:|
| 6.5795 | 0 |
| 5.8251 | 1 |
| 5.3850 | 2 |
| 5.0469 | 3 |
| 4.8048 | 4 |
| 4.6144 | 5 |
| 4.4743 | 6 |
| 4.3366 | 7 |
| 4.2178 | 8 |
| 4.1022 | 9 |
| 3.9908 | 10 |
| 3.8856 | 11 |
| 3.7700 | 12 |
| 3.6673 | 13 |
| 3.5560 | 14 |
| 3.4401 | 15 |
| 3.3328 | 16 |
| 3.2248 | 17 |
| 3.1290 | 18 |
| 3.0121 | 19 |
| 2.8978 | 20 |
| 2.7830 | 21 |
| 2.6913 | 22 |
| 2.5822 | 23 |
| 2.4772 | 24 |
| 2.3761 | 25 |
| 2.2792 | 26 |
| 2.1664 | 27 |
| 2.0731 | 28 |
| 1.9734 | 29 |
| 1.8900 | 30 |
| 1.7927 | 31 |
| 1.7036 | 32 |
| 1.6202 | 33 |
| 1.5329 | 34 |
| 1.4535 | 35 |
| 1.3778 | 36 |
| 1.3093 | 37 |
| 1.2413 | 38 |
| 1.1709 | 39 |
| 1.1114 | 40 |
| 1.0563 | 41 |
| 0.9950 | 42 |
| 0.9344 | 43 |
| 0.8830 | 44 |
| 0.8380 | 45 |
| 0.7966 | 46 |
| 0.7552 | 47 |
| 0.7162 | 48 |
### Framework versions
- Transformers 4.44.0
- TensorFlow 2.16.1
- Datasets 2.21.0
- Tokenizers 0.19.1
|