File size: 2,228 Bytes
bf93d49
 
 
 
 
 
 
b69c2e1
0763245
 
bf93d49
 
0763245
 
 
 
 
b69c2e1
 
0763245
 
 
 
 
 
e2c97c4
bf93d49
 
 
 
 
 
 
b69c2e1
0763245
e2c97c4
 
bf93d49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0763245
bf93d49
 
 
 
b69c2e1
 
e2c97c4
 
 
 
 
bf93d49
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---

library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: openai/whisper-medium
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_17_0
      type: common_voice_17_0
      config: kk
      split: test
      args: kk
    metrics:
    - name: Wer
      type: wer
      value: 36.12903225806451
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# openai/whisper-medium

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co./openai/whisper-medium) on the common_voice_17_0 dataset.

It achieves the following results on the evaluation set:

- Loss: 0.6413

- Wer: 36.1290



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500

- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer     |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 0.0064        | 15.011  | 1000 | 0.5457          | 39.7097 |
| 0.0009        | 31.0094 | 2000 | 0.5771          | 38.3548 |
| 0.0           | 47.0078 | 3000 | 0.6180          | 36.4194 |
| 0.0           | 63.0062 | 4000 | 0.6349          | 36.0645 |
| 0.0           | 79.0046 | 5000 | 0.6413          | 36.1290 |


### Framework versions

- Transformers 4.46.0.dev0
- Pytorch 2.5.0+cu118
- Datasets 3.0.3.dev0
- Tokenizers 0.20.1