--- license: apache-2.0 base_model: nnheui/pythia-1.4b-sft-full tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: pythia-1.4b-dpo-full results: [] --- # pythia-1.4b-dpo-full This model is a fine-tuned version of [nnheui/pythia-1.4b-sft-full](https://huggingface.co./nnheui/pythia-1.4b-sft-full) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.6257 - Rewards/chosen: -0.5234 - Rewards/rejected: -0.7812 - Rewards/accuracies: 0.6597 - Rewards/margins: 0.2578 - Logps/rejected: -416.0 - Logps/chosen: -446.0 - Logits/rejected: -1.2422 - Logits/chosen: -1.1953 - Logps/chosen Top Tokens: -0.0007 - Logps/rejected Top Tokens: -0.0007 - Logps/chosen Bottom Tokens: -14.375 - Logps/rejected Bottom Tokens: -14.3125 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - distributed_type: multi-GPU - num_devices: 6 - gradient_accumulation_steps: 4 - total_train_batch_size: 120 - total_eval_batch_size: 30 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Logps/chosen Top Tokens | Logps/rejected Top Tokens | Logps/chosen Bottom Tokens | Logps/rejected Bottom Tokens | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:-----------------------:|:-------------------------:|:--------------------------:|:----------------------------:| | 0.678 | 0.1963 | 100 | 0.6789 | -0.0275 | -0.0608 | 0.5881 | 0.0332 | -344.0 | -396.0 | -1.1562 | -1.0938 | -0.0009 | -0.0009 | -14.0625 | -14.0 | | 0.645 | 0.3925 | 200 | 0.6489 | -0.2871 | -0.4238 | 0.6448 | 0.1367 | -380.0 | -422.0 | -1.2031 | -1.1562 | -0.0009 | -0.0009 | -14.375 | -14.3125 | | 0.6396 | 0.5888 | 300 | 0.6304 | -0.4512 | -0.6797 | 0.6627 | 0.2275 | -406.0 | -438.0 | -1.2344 | -1.1875 | -0.0007 | -0.0008 | -14.375 | -14.3125 | | 0.6102 | 0.7851 | 400 | 0.6268 | -0.5039 | -0.7617 | 0.6567 | 0.2578 | -414.0 | -444.0 | -1.2344 | -1.1875 | -0.0007 | -0.0007 | -14.3125 | -14.25 | | 0.6084 | 0.9814 | 500 | 0.6259 | -0.5234 | -0.7852 | 0.6567 | 0.2617 | -416.0 | -446.0 | -1.2422 | -1.1953 | -0.0007 | -0.0007 | -14.375 | -14.3125 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.2+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1