--- language: ja tags: - text-generation - japanese - llm - lora - instruction-tuning license: cc-by-nc-sa-4.0 datasets: - ichikara-instruction - Ego/jpflan-raw base_model: llm-jp/llm-jp-3-3.7b model_name: llm-jp-3-3.7b-it_lora_all widget: - text: " " --- # LLM-JP-3.3.7B LoRA Model This is the **LLM-JP-3.3.7B** model fine-tuned with LoRA for instruction-based Japanese text generation tasks. The model has been fine-tuned on datasets **ichikara-instruction** and **Ego/jpflan-raw**. ## How to Use Below is an example of how to use the model for inference: ```python import torch from unsloth import FastLanguageModel from peft import PeftModel HF_TOKEN = "" # Add your Hugging Face token here # Load the base model and tokenizer model, tokenizer = FastLanguageModel.from_pretrained( model_name="llm-jp/llm-jp-3-3.7b", dtype=None, load_in_4bit=True, trust_remote_code=True, ) model = PeftModel.from_pretrained(model, "nito78/llm-jp-3-3.7b-it_lora_all", token=HF_TOKEN) # Switch to inference mode FastLanguageModel.for_inference(model) # Example usage import json # Load dataset datasets = [] with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" from tqdm import tqdm # Perform inference results = [] for dt in tqdm(datasets): input = dt["input"] prompt = f"""### 指示\n{input}\n### 回答\n""" inputs = tokenizer([prompt], return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=512, use_cache=True, do_sample=False, repetition_penalty=1.2) prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split("\n### 回答")[-1] results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) import os import json # Save results output_dir = "./results" os.makedirs(output_dir, exist_ok=True) output_file = os.path.join(output_dir, "result.jsonl") with open(output_file, "w", encoding="utf-8") as f: for result in results: json.dump(result, f, ensure_ascii=False) f.write("\n")