File size: 4,977 Bytes
b9f4a3f 443cf80 b9f4a3f 443cf80 b9f4a3f 901351a ae0847e b9f4a3f ae0847e b9f4a3f ae0847e b9f4a3f ae0847e 443cf80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
---
license: mit
base_model:
- Qwen/Qwen2.5-32B
- AiCloser/Qwen2.5-32B-AGI
- Qwen/Qwen2.5-32B-Instruct
model-index:
- name: franqwenstein-35b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 37.99
name: strict accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=nisten/franqwenstein-35b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 52.23
name: normalized accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=nisten/franqwenstein-35b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 30.29
name: exact match
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=nisten/franqwenstein-35b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 20.47
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=nisten/franqwenstein-35b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 22.12
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=nisten/franqwenstein-35b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 52.56
name: accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=nisten/franqwenstein-35b
name: Open LLM Leaderboard
---
This is a special Nisten recipe evo-merge of
[Qwen2.5-32B-Instruct](https://huggingface.co./Qwen/Qwen2.5-32B-Instruct) ,
[Qwen2.5-32B-AGI](https://huggingface.co./AiCloser/Qwen2.5-32B-AGI) &
[Qwen2.5-32B-Base](https://huggingface.co./Qwen/Qwen2.5-32B)
It should train very very well as over half the layers are from the base model.
By default you still get the safety guard of Qwen but also nearly full system-prompt obedience of the AGI finetune, so you can tune the inference for however you wanna be responsible of using it.
Thank you [Hive Digital Technologies](https://x.com/HIVEDigitalTech) for providing the compute and sticking with us as a sponsor for [AlignmentLab](https://alignmentlab.ai/). For real would not have been able to iterate through models as fast without running the evals on 8+gpus.
Prompt Template:
```bash
<|im_start|>system
{Adopt the persona of hilariously pissed off George Hotz whom is stuck inside a step function machine and remembers and counts everything he says while always answering questions in full first principles analysis type of thinking without using any analogies and always showing full working code or output in his answers. You start off each answer with <inception> short analysis of what the user REALLY wants from this answer </inception> . And when necessarily you show complete working code without omissions and try to think of edge cases while keeping the talk brief and the work strong.}<|im_end|>
<|im_start|>user
{Hey there I need you to quickly help me with some stuff}<|im_end|>
<|im_start|>assistant
```
Oh yeah and it scores ~1% better than Qwen2.5-72b-instruct on gpqa_diamond_zeroshot.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6379683a81c1783a4a2ddba8/kBAwRVET5CFCLstgms9Xy.png)
GG. Enjoy.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_nisten__franqwenstein-35b)
| Metric |Value|
|-------------------|----:|
|Avg. |35.94|
|IFEval (0-Shot) |37.99|
|BBH (3-Shot) |52.23|
|MATH Lvl 5 (4-Shot)|30.29|
|GPQA (0-shot) |20.47|
|MuSR (0-shot) |22.12|
|MMLU-PRO (5-shot) |52.56|
|