File size: 1,694 Bytes
1755f2d
1ce3094
1755f2d
 
b78eff1
 
1755f2d
 
 
 
 
 
 
 
 
 
1ce3094
b78eff1
 
 
 
 
 
 
1755f2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ce3094
 
1755f2d
 
 
b78eff1
1755f2d
 
 
1ce3094
 
b78eff1
 
 
1755f2d
 
 
 
 
1ce3094
1755f2d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: mit
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: results
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# results

This model is a fine-tuned version of [gagan3012/k2t](https://huggingface.co./gagan3012/k2t) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5481
- Rouge1: 65.0534
- Rouge2: 45.7092
- Rougel: 55.8222
- Rougelsum: 57.1866
- Gen Len: 17.8061

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 0.5049        | 1.0   | 1101 | 0.5527          | 65.0475 | 45.6298 | 55.8323 | 57.2102   | 17.7929 |
| 0.4994        | 2.0   | 2202 | 0.5490          | 65.0567 | 45.7082 | 55.8808 | 57.2343   | 17.8005 |
| 0.4969        | 3.0   | 3303 | 0.5481          | 65.0534 | 45.7092 | 55.8222 | 57.1866   | 17.8061 |


### Framework versions

- Transformers 4.20.1
- Pytorch 1.12.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1