Hip-Implant / app.py
nishantguvvada's picture
updated to working version
f104f32
raw
history blame
1.24 kB
import streamlit as st
import tensorflow as tf
import cv2
import numpy as np
from PIL import Image, ImageOps
import imageio.v3 as iio
@st.cache_resource()
def load_model():
model=tf.keras.models.load_model('./hip_impant_model.h5')
return model
st.title(":blue[Nishant Guvvada's] :red[AI Journey] The Hip-Implant X-ray Assistant")
image = Image.open('./title.jpg')
st.image(image)
st.write("""
# Image Classification
"""
)
file = st.file_uploader("Upload an X-ray image", type= ['png', 'jpg'])
def model_prediction(path):
resize = tf.image.resize(path, (256,256))
with st.spinner('Model is being loaded..'):
model=load_model()
yhat = model.predict(np.expand_dims(resize/255, 0))
return yhat
def on_click():
if file is None:
st.text("Please upload an image file")
else:
image = Image.open(file)
st.image(image, use_column_width=True)
image = image.convert('RGB')
predictions = model_prediction(np.array(image))
if (predictions>0.5):
st.write("""# Prediction : Implant is loose""")
else:
st.write("""# Prediction : Implant is in control""")
st.button('Predict', on_click=on_click)