--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: whisper-large-v3-croarian_overlap_removed_10 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Wer type: wer value: 76.49063032367974 --- # whisper-large-v3-croarian_overlap_removed_10 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 2.2772 - Wer: 76.4906 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0473 | 12.66 | 1000 | 1.8439 | 71.3458 | | 0.0101 | 25.32 | 2000 | 2.0913 | 66.2919 | | 0.007 | 37.97 | 3000 | 2.2344 | 74.4009 | | 0.0055 | 50.63 | 4000 | 2.2772 | 76.4906 | ### Framework versions - Transformers 4.37.1 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.1