File size: 4,855 Bytes
c7537e6
 
 
 
 
 
 
 
 
 
cdd6ec8
 
 
e441477
c7537e6
 
 
 
 
 
46ccb77
1820daf
a40bd6a
1734b81
e9be0ac
1820daf
896eceb
4fc0b9f
7087a9d
d87736c
d82d89d
e9be0ac
7087a9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b42d929
7087a9d
1820daf
4fc0b9f
7087a9d
 
 
1820daf
 
7087a9d
1820daf
 
 
 
7087a9d
1820daf
7087a9d
 
1820daf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7087a9d
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
language:
- en
- de
- fr
- fa
- ar
- tr
- es
- it
- zh
- ko
- ja
- hi
metrics:
- accuracy
pipeline_tag: document-question-answering
tags:
- text-generation-inference
---
### MultiModal MultiLingual (3ML)

This model is 4bit quantized of [glm-4v-9b](https://huggingface.co./THUDM/glm-4v-9b) Model (Less than 9G). 

 It excels in document, image, chart questioning answering and delivers superior performance over GPT-4-turbo-2024-04-09, Gemini 1.0 Pro, Qwen-VL-Max, and Claude 3 Opus.

Some part of the original Model changed and It can excute on free version of google colab.
# Try it: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1aZGX9f5Yw1WbiOrS3TpvPk_UJUP_yYQU?usp=sharing)

[![Github Source]](https://github.com/nikravan1/3ML)

Note: For optimal performance with document and image understanding, please use English or Chinese. The model can still handle chat in any supported language.
### About GLM-4V-9B

GLM-4V-9B is a multimodal language model with visual understanding capabilities. The evaluation results of its related classic tasks are as follows:


|                         | **MMBench-EN-Test** | **MMBench-CN-Test** | **SEEDBench_IMG** | **MMStar** | **MMMU** | **MME** | **HallusionBench** | **AI2D** | **OCRBench** |
|-------------------------|---------------------|---------------------|-------------------|------------|----------|---------|--------------------|----------|--------------|
|                         | 英文综合                | 中文综合                | 综合能力              | 综合能力       | 学科综合     | 感知推理    | 幻觉性                | 图表理解     | 文字识别         |
| **GPT-4o, 20240513**    | 83.4                | 82.1                | 77.1              | 63.9       | 69.2     | 2310.3  | 55                 | 84.6     | 736          |
| **GPT-4v, 20240409**    | 81                  | 80.2                | 73                | 56         | 61.7     | 2070.2  | 43.9               | 78.6     | 656          |
| **GPT-4v, 20231106**    | 77                  | 74.4                | 72.3              | 49.7       | 53.8     | 1771.5  | 46.5               | 75.9     | 516          |
| **InternVL-Chat-V1.5**  | 82.3                | 80.7                | 75.2              | 57.1       | 46.8     | 2189.6  | 47.4               | 80.6     | 720          |
| **LlaVA-Next-Yi-34B**   | 81.1                | 79                  | 75.7              | 51.6       | 48.8     | 2050.2  | 34.8               | 78.9     | 574          |
| **Step-1V**             | 80.7                | 79.9                | 70.3              | 50         | 49.9     | 2206.4  | 48.4               | 79.2     | 625          |
| **MiniCPM-Llama3-V2.5** | 77.6                | 73.8                | 72.3              | 51.8       | 45.8     | 2024.6  | 42.4               | 78.4     | 725          |
| **Qwen-VL-Max**         | 77.6                | 75.7                | 72.7              | 49.5       | 52       | 2281.7  | 41.2               | 75.7     | 684          |
| **GeminiProVision**     | 73.6                | 74.3                | 70.7              | 38.6       | 49       | 2148.9  | 45.7               | 72.9     | 680          |
| **Claude-3V Opus**      | 63.3                | 59.2                | 64                | 45.7       | 54.9     | 1586.8  | 37.8               | 70.6     | 694          |
| **GLM-4v-9B**           | 81.1                | 79.4                | 76.8              | 58.7       | 47.2     | 2163.8  | 46.6               | 81.1     | 786          |
**This repository is the model repository of 4bit quantized of GLM-4V-9B model, supporting `8K` context length.**
## Quick Start

Use colab model or this python script.
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image

device = "cuda"

modelPath="nikravan/glm-4vq"
tokenizer = AutoTokenizer.from_pretrained(modelPath, trust_remote_code=True)

model = AutoModelForCausalLM.from_pretrained(
    modelPath,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True,
    device_map="auto"
)



query ='explain all the details in this picture'
image = Image.open("a3.png").convert('RGB')
#image=""
inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "content": query}],
                                       add_generation_prompt=True, tokenize=True, return_tensors="pt",
                                       return_dict=True)  # chat with image mode

inputs = inputs.to(device)

gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.no_grad():
    outputs = model.generate(**inputs, **gen_kwargs)
    outputs = outputs[:, inputs['input_ids'].shape[1]:]
    print(tokenizer.decode(outputs[0]))
```