--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert-base-uncased-finetuned-glue_sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9243119266055045 - name: F1 type: f1 value: 0.9243119266055045 --- # bert-base-uncased-finetuned-glue_sst2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3392 - Accuracy: 0.9243 - F1: 0.9243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.1818 | 1.0 | 4210 | 0.2472 | 0.9209 | 0.9208 | | 0.1268 | 2.0 | 8420 | 0.3171 | 0.9232 | 0.9232 | | 0.0826 | 3.0 | 12630 | 0.3392 | 0.9243 | 0.9243 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0